1. Make a scatter diagram showing account balance on the y axis and ATM use per month on the x axis. Include a linear trendline and show the equation and R2 on the diagram.
a) How much of the variation in account balances is explained by ATM use?
b) Predict a customer’s account balance if they use the ATM 5 times per month?
c) What is the predicted account balance if they use the ATM 6 times per month?
2. Use the regression tool in Data Analysis to develop a regression model using account balance as the dependent variable and ATM use per month as the independent variable.
a) What is the coefficient on the independent variable? Interpret this in your own words.
b) Is this statistically significant at the 95% level? How do you know?
c) Predict the customer’s account balance if they use the ATM 5 times per month.
Acct. Bal. | # ATM tran. | # services | Debit card? | Interest? | City |
1756 | 13 | 4 | 0 | 1 | 2 |
748 | 9 | 2 | 1 | 0 | 1 |
1501 | 10 | 1 | 0 | 0 | 1 |
1831 | 10 | 4 | 0 | 1 | 3 |
1622 | 14 | 6 | 0 | 1 | 4 |
1886 | 17 | 3 | 0 | 1 | 1 |
740 | 6 | 3 | 0 | 0 | 3 |
1593 | 10 | 8 | 1 | 0 | 1 |
1169 | 6 | 4 | 0 | 0 | 4 |
2125 | 18 | 6 | 0 | 0 | 2 |
1554 | 12 | 6 | 1 | 0 | 3 |
1474 | 12 | 7 | 1 | 0 | 1 |
1913 | 6 | 5 | 0 | 0 | 1 |
1218 | 10 | 3 | 1 | 0 | 1 |
1006 | 12 | 4 | 0 | 0 | 1 |
2215 | 20 | 3 | 1 | 0 | 4 |
137 | 7 | 2 | 0 | 0 | 3 |
167 | 5 | 4 | 0 | 0 | 4 |
343 | 7 | 2 | 0 | 0 | 1 |
2557 | 20 | 7 | 1 | 0 | 4 |
2276 | 15 | 4 | 1 | 0 | 3 |
1494 | 11 | 2 | 0 | 1 | 1 |
2144 | 17 | 3 | 0 | 0 | 3 |
1995 | 10 | 7 | 0 | 0 | 2 |
1053 | 8 | 4 | 1 | 0 | 3 |
1526 | 8 | 4 | 0 | 1 | 2 |
1120 | 8 | 6 | 1 | 0 | 3 |
1838 | 7 | 5 | 1 | 1 | 3 |
1746 | 11 | 2 | 0 | 0 | 2 |
1616 | 10 | 4 | 1 | 1 | 2 |
1958 | 6 | 2 | 1 | 0 | 2 |
634 | 2 | 7 | 1 | 0 | 4 |
580 | 4 | 1 | 0 | 0 | 1 |
1320 | 4 | 5 | 1 | 0 | 1 |
1675 | 6 | 7 | 1 | 0 | 2 |
789 | 8 | 4 | 0 | 0 | 4 |
1735 | 12 | 7 | 0 | 1 | 3 |
1784 | 11 | 5 | 0 | 0 | 1 |
1326 | 16 | 8 | 0 | 0 | 3 |
2051 | 14 | 4 | 1 | 0 | 4 |
1044 | 7 | 5 | 1 | 0 | 1 |
1885 | 10 | 6 | 1 | 1 | 2 |
1790 | 11 | 4 | 0 | 1 | 3 |
765 | 4 | 3 | 0 | 0 | 4 |
1645 | 6 | 9 | 0 | 1 | 4 |
32 | 2 | 0 | 0 | 0 | 3 |
1266 | 11 | 7 | 0 | 0 | 4 |
890 | 7 | 1 | 0 | 1 | 1 |
2204 | 14 | 5 | 0 | 0 | 2 |
2409 | 16 | 8 | 0 | 0 | 2 |
1338 | 14 | 4 | 1 | 0 | 2 |
2076 | 12 | 5 | 1 | 0 | 2 |
1708 | 13 | 3 | 1 | 0 | 1 |
2138 | 18 | 5 | 0 | 1 | 4 |
2375 | 12 | 4 | 0 | 0 | 2 |
1455 | 9 | 5 | 1 | 1 | 3 |
1487 | 8 | 4 | 1 | 0 | 4 |
1125 | 6 | 4 | 1 | 0 | 2 |
1989 | 12 | 3 | 0 | 1 | 2 |
2156 | 14 | 5 | 1 | 0 | 2 |
1.
> model=lm(Acct..Bal.~X..ATM.tran.)
> summary(model)
Call:
lm(formula = Acct..Bal. ~ X..ATM.tran.)
Residuals:
Min 1Q Median 3Q Max
-1037.78 -244.84 10.42 297.02 881.73
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 485.21 143.44 3.383 0.00129 **
X..ATM.tran. 98.51 12.87 7.655 2.33e-10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 424.6 on 58 degrees of freedom
Multiple R-squared: 0.5025, Adjusted R-squared: 0.494
F-statistic: 58.59 on 1 and 58 DF, p-value: 2.327e-10
a) R2 = 0.494 means that 49.4% of the total variation is explained by the regression model.
b) Predicted Account Balance = 485.21 + 98.51*5 = $977.76
c) Predicted Account Balance = 485.21 + 98.51*6 = $1076.27
Get Answers For Free
Most questions answered within 1 hours.