a) Given that stock price=£1.15, strike price=£1, T=0.25 (i.e. 3 months), risk free rate=0.10 and ?=0.20 calculate the price of a European call. The stock under consideration pays no dividends. Also d1=ln[S/PV(X)]/(sigmaT1/2)+(sigmaT1/2/2) and d2= d1- sigmaT1/2
b) The current price of CDE stock is £6. In each of the next two years, this stock price can either go up by £2.50 or go down by £2.00. The stock pays no dividends. The risk free rate is 3%. Using the binomial model, calculate the price of a two year put on CDE with a strike price of £7.
Stock Price (S) | 1.15 | |||||||||||
Strike Price (X) | 1 | |||||||||||
Time (T) | 0.25 | |||||||||||
Risk Free rate (rf) | 0.1 | |||||||||||
Volatility (Sigma) | 0.2 | |||||||||||
Price of Put Option= | S*N(d1)+X*exp*(-rf*t)*N(d2) | (Black Scholes Merton Model) | ||||||||||
d1= | ln(S/X)+ (r+0.5*sigma^2)*t / s*sqrt(T) | |||||||||||
d2= | d1- S*Sqrt (t) | |||||||||||
d1 | 1.697619 | |||||||||||
d2 | 1.122619 | |||||||||||
Price of the option | 0.250752 | B1*NORMSDIST(B12)-B2*EXP(-B4*B3)*NORMSDIST(B13) | (Formula for calculating the option price) |
Get Answers For Free
Most questions answered within 1 hours.