Construct the indicated confidence interval for the population mean μ using the t-distribution. Assume the population is normally distributed.
ce=0.99, x =13.9, s=3.0, n=6
The 99% confidence interval using a t-distribution is ____________.(Round to one decimal place as needed.)
Solution:
Mean (x)= 13.9 | |||||
Standard Deviation (s)= 3 | |||||
No of sample (n)= 6 | |||||
Confidence Interval= ?? | |||||
Step 1: df=(n-1)= (6-1)=5 | |||||
Step 2: a= (1-ce)/2= (1-0.99)/2= 0.005 | |||||
Step 3: Find in t-distribution Table with df=5 and a= 0.005 | |||||
Result is 4.032 | |||||
Step 4: standard deviation(s)/ n^1/2 = 3/6^1/2 = 1.22 | |||||
Step 5: 4.032*1.22= 4.9 | |||||
Step 6: Lower End of Range : Mean - Step 5 | |||||
Lower End of Range = 13.9-4.9= 9 | |||||
Upper End of Range = Mean + Step 5 | |||||
Upper End of Range = 13.9+4.9= 18.8 | |||||
Confidence Interval: 9<m<18.8 |
Get Answers For Free
Most questions answered within 1 hours.