The table below displays returns associated with a company's shares over the last 15 years.
Year | Return (% pa) |
---|---|
2005 | 23 |
2006 | 17 |
2007 | 11 |
2008 | 15 |
2009 | 12 |
Year | Return (% pa) |
---|---|
2010 | 31 |
2011 | 2 |
2012 | 16 |
2013 | 8 |
2014 | 31 |
Year | Return (% pa) |
---|---|
2015 | 29 |
2016 | 5 |
2017 | 26 |
2018 | 6 |
2019 | 1 |
Based on this historic data, calculate the expected return on the shares and its standard deviation. Give your answers as a percentage per annum to 2 decimal places.
a)Expected return = % pa
b)Standard deviation = % pa
Year | Return | Weight based on years | Return*Weight | Return - Expected return | (Return - Expected return)^2 |
X | X-X' | (X-X')^2 | |||
2005 | 23 | 15 | 345 | 6.4 | 40.96 |
2006 | 17 | 14 | 238 | 0.4 | 0.16 |
2007 | 11 | 13 | 143 | -5.6 | 31.36 |
2008 | 15 | 12 | 180 | -1.6 | 2.56 |
2009 | 12 | 11 | 132 | -4.6 | 21.16 |
2010 | 31 | 10 | 310 | 14.4 | 207.36 |
2011 | 2 | 9 | 18 | -14.6 | 213.16 |
2012 | 16 | 8 | 128 | -0.6 | 0.36 |
2013 | 8 | 7 | 56 | -8.6 | 73.96 |
2014 | 31 | 6 | 186 | 14.4 | 207.36 |
2015 | 29 | 5 | 145 | 12.4 | 153.76 |
2016 | 5 | 4 | 20 | -11.6 | 134.56 |
2017 | 26 | 3 | 78 | 9.4 | 88.36 |
2018 | 6 | 2 | 12 | -10.6 | 112.36 |
2019 | 1 | 1 | 1 | -15.6 | 243.36 |
Total | 120 | 1992 | 1530.8 |
Expected return = | 1992/120 | |
= | 16.6 |
Variance = Σ(X-X')^2 / n-1
= 1530.8 / 15-1
= 109.34
Standard deviation = √Variance
= √109.34
= 10.46
Get Answers For Free
Most questions answered within 1 hours.