Question

A perpetuity-immediate makes the following pattern of payments every 3 years. It pays 3 at t...

A perpetuity-immediate makes the following pattern of payments every 3 years. It pays 3 at t = 1, then 1 at t = 2, then 4 at t = 3. In a list the payments are 3,1,4,3,1,4,3,1,4... and so on. Find the present value of this perpetuity assuming 8% effective interest per year.

Homework Answers

Answer #1

Given that, a perpetuity makes payment in following pattern.

It pays 3 at t = 1, then 1 at t = 2, then 4 at t = 3 and so on.

interest rate r = 8%

1st calculating value of three payment at year 3 using compounding formula FV = PV*(1+r)^t

So, $3 received at year 1 is valued 3*1.08^2 = $3.4992 at year 3

and $1 received at year 2 is valued at 1*1.08 = $1.08 at year 3

So, total value for year 1,2 and 3 can be converted to a single value at year 3 of (3.4992 + 1.08 + 4) = $8.5792

So, now this perpetuity pays $8.5792 every 3 years starting 3 year from now.

So 3 years interest rate = (1+r)^3-1 = 1.08^3 - 1 = 25.9712%

So, Present value of this annuity = Payment in 3 years/3-year rate = 8.5792/0.259712 = $33.0335

So, Present value of this annuity = $33.03

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Billy is offered two payment plans. One is a perpetuity-immediate paying $1000 every year at 10%...
Billy is offered two payment plans. One is a perpetuity-immediate paying $1000 every year at 10% effective interest per year. The other is an annuity-immediate paying $1450 every year at 8% per year for 10 years, plus an extra $500 with the 5th payment. Which payment plan has a larger present value?
You are given a perpetuity that makes payments every two years, with a payment at the...
You are given a perpetuity that makes payments every two years, with a payment at the beginning of the year numbered 2n + 1, for n = 0, 1, 2, …, equal to 1/((n+1)(n+2)*3n). Find the present value of this perpetuity at time 0, given that the annual effective interest rate is 4.5%.  
A perpetuity-immediate pays X per year. Kevin receives the first n payments, Jeffrey receives the next...
A perpetuity-immediate pays X per year. Kevin receives the first n payments, Jeffrey receives the next n payments and Hal receives the remaining payments. The present value of Kevin's payments is 20% of the present value of the original perpetuity. The present value of Hal's payments is K of the present value of the original perpetuity. Calculate the present value of Jeffrey's payments as a percentage of the original perpetuity.
ANSWER BOTH QUESTIONS PLEASE 1. A perpetuity-immediate makes a payment of an amount K every three...
ANSWER BOTH QUESTIONS PLEASE 1. A perpetuity-immediate makes a payment of an amount K every three months. The present value of the perpetuity is $10,500. Interest is at a nominal annual rate of 6% compounded semiannually. In which of the following ranges is the amount K? 2. Deposits of $100 per month into an account start on January 1, 2015 and continue through December 1, 2034. The account earn a nominal annual interest rate of 6% compounded quarterly. Find the...
1. A perpetuity-due has monthly payments in this pattern: Q, 2Q, 3Q, Q, 2Q, 3Q, Q,...
1. A perpetuity-due has monthly payments in this pattern: Q, 2Q, 3Q, Q, 2Q, 3Q, Q, 2Q, 3Q, . . . The present value of the perpetuity is $700,000 and the effective annual discount rate is 6%. Find Q. 2. A 30 year annuity-immediate has first payment $1200 and each subsequent payment increases by 0.5%. The payments are monthly and the annual effective rate is 8%. Find the accumulated value of the annuity at the end of 30 years. 3....
An annuity immediate pays 200 every month for 10 years. Calculate the present value at the...
An annuity immediate pays 200 every month for 10 years. Calculate the present value at the following rates of interest: Annual effective interest rate of 6% Nominal interest rate convertible monthly of 8% Nominal rate of discount convertible once every two years of 4%
A perpetuity costs $ 80 (price of perpetuity at ? = 0) and makes annual payments...
A perpetuity costs $ 80 (price of perpetuity at ? = 0) and makes annual payments at the end of the year. The perpetuity pays $1 at the end of year 2, $2 at the end of year 3, ……, and $ ? at the end of year (? + 1). After year (? + 1), the payments remain constant at $ ?. The nominal interest rate is 10% convertible semiannually. Calculate $ ?.
Find the present value of an annuity in perpetuity that makes payments of $70 at the...
Find the present value of an annuity in perpetuity that makes payments of $70 at the end of year 6, year 12, year 18, year 24, etc. and makes payments of $60 at the end of year 1, year 4, year 7, year 10, etc. and where effective annual interest is i = 7%.
A perpetuity pays $390.26 at the start of each year. The present value of this perpetuity...
A perpetuity pays $390.26 at the start of each year. The present value of this perpetuity at an annual effective interest rate i is equal to the present value of an annuity which pays 800 at the start of the first year, 790 at the start of the second year, 780 at the start of the third year and so on for 20 years. Find i to 1 significant figure.
A perpetuity with payments of 1 at the end of each year has a present value...
A perpetuity with payments of 1 at the end of each year has a present value of 40. A 10-year annuity pays X at the beginning of each year. Assuming the same effective interest rate, the present values of the perpetuity and the 10-year annuity are equal. Find X.