find with formulas
Modified Duration:
For this bond: coupon interest rate: 5%. yield: 4%; semiannual pay; 2 years.
a. find the bond price in decimal format (as though principal is 1.0) and in percentage-of- par format.
b. using that price find the Macauley Duration.
c. using Macauley Duration find Modified Duration
Price of bond = Interest*PVAF at 2% for 4 semiannual period + face value*PVF at 2% for 4th semiannual period
.025* 3.8977 + 1*.9238 = 1.019
Price as % of par = (1.019/1)*100 = 101.9039
PVAF at 2% = 1-(1+r)^-n/r = 1-(1.02)^-4 /.02 =3.8077
PVF at 2% for 4th semiannual period = 1/(1+r)^n = 1.(1.02)^4 = .9238
b-
semiannual period |
cash flow |
present value of cash flow =cash flow/(1+r)^n r= 2% |
present value* semiannual period |
1 |
0.025 |
0.02451 |
0.02451 |
2 |
0.025 |
0.024029 |
0.048058 |
3 |
0.025 |
0.023558 |
0.070674 |
4 |
1.025 |
0.946942 |
3.787766 |
total |
3.931009 |
||
Macculays duration in years |
total/market price |
3.9310/1.019 |
3.857704 |
Modified duration |
maculays duration/(1+YTM/n) |
3.8577/(1.02) |
3.782059 |
Get Answers For Free
Most questions answered within 1 hours.