Price | Maturity in years | Bond equivalent yield |
400 | 20 | ? |
500 | 20 | ? |
500 | 10 | ? |
? | 10 | 10% |
? | 10 | 8% |
400 | ? | 8% |
Fill in the table above for the zero-coupon bonds above. All of them have par values of $1,000.
Formula for BEY for a Zero coupon bond= |
BEY=(FV/PV)^(1/n)-1 |
1..BEY=(1000/400)^(1/20)-1 |
4.69% |
2..BEY=(1000/500)^(1/20)-1 |
3.53% |
3..BEY=(1000/500)^(1/10)-1 |
7.18% |
4..10%=(1000/PV)^(1/10)-1 |
0.1=(1000/PV)^(1/10)-1 |
Solving Algebraically,assuming Price,PV=x |
ie. (1000/x)^(1/10)=1.1 |
(1000/x)=1.1^(1/10) |
where 1.1^(1/10)= |
1.009576583 |
So, x= |
1000/1.009577= |
990.51 |
Price=991 |
5..8%=(1000/PV)^(1/10)-1 |
0.08=(1000/PV)^(1/10)-1 |
Solving Algebraically,assuming Price,PV=x |
ie. (1000/x)^(1/10)=1.08 |
(1000/x)=1.08^(1/10) |
where 1.08^(1/10)= |
1.007725795 |
So, x= |
1000/1.007726= |
992.33 |
Price=992 |
6..8%=(1000/400)^(1/n)-1 |
Solving online, |
Maturity,n= 11.9 yrs. |
or 12 yrs. |
Get Answers For Free
Most questions answered within 1 hours.