Need to check and see if my answer is right. A 30-year 6% semi-annual coupon bond has a PAR value of $1000 and a current price of 103.2121% of PAR. If the tenor of the bond is 14 years, what must the yield of maturity be?
time (t)= 14 years
Par Value = 1000
Price of Bond = 103.2121%*1000 = 1032.121
Coupon Half yearly = 6%*1000/2 =30
Price =
Coupon/(1+YTM/2)2t + Par Value /(1+YTM/2)2t
= 30/(1+YTM/2)2t
+ 1000 /(1+YTM/2)2*14
YTM = 5.66%
We use excel sheet to get exact YTM
A | B | C | D | E | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | AA | AB | AC | AD | |||
Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | |||
Price of Bond | Coupon | Coupon +Face Value | |||||||||||||||||||||||||||||
1 | -1032.121 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 1030 | ||
YTM/2 USING IRR function of EXcel | 2.83% | IRR(A1:AD1) | |||||||||||||||||||||||||||||
IRR=YTM | 5.66% | (2.83%*2) |
Get Answers For Free
Most questions answered within 1 hours.