Question

A service transformer has a secondary power rating of 11.1 kVA and 5.4 kW. What is...

A service transformer has a secondary power rating of 11.1 kVA and 5.4 kW. What is the phase shift (in degrees) between voltage and current (theta) for this transformer? (Answer format [ _ _ . _ _ ])

Homework Answers

Answer #1

Given Secondary power rating

P = 5.4 KW

S = 11.1 KVA

Phase shift between voltage and current ()

COS = P / S

COS = 5.4 k / 11.1 k

COS = 0.486

= Cos -1(0.486)

= 60.89

Phase shift between voltage and current for this transformer = 60.89 degrees

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A single phase transformer rated at 3000 KVA, 69kV, 60 Hz has a total internal impedance...
A single phase transformer rated at 3000 KVA, 69kV, 60 Hz has a total internal impedance Zp of 127ohm, referred to the primary side. Calculate: a) primary and secondary currents b) voltage regulation from no load to full load for 2000 kW resistive load, knowing that the primary voltage supply is fixed at 69 kV. c) primary and secondary currents if the secondary is accidentally short circuited.
  A 2000-kva transformer has a no-load loss of 6 kw and a total load loss of...
  A 2000-kva transformer has a no-load loss of 6 kw and a total load loss of 16 kw, at full load, and at 100% power factor. The efficiency of the transformer at one-half this load is      A. 99.01%. B. 99.16%. C. 99.75% D. 99.63%.
Problem 4: A single phase 60 Hz two-winding power transformer is rated at 2400V/240V and 100...
Problem 4: A single phase 60 Hz two-winding power transformer is rated at 2400V/240V and 100 kVA. If an autotransformer is built from this conventional transformer to supply a load at 2400V with supply voltage 2640V. Draw the autotransformer and calculate the voltage, current and apparent power rating of the auto transformer. Also calculate the apparent power rating advantage of autotransformer over conventional transformer.
A 20 kVA single phase transformer 4800/480V has primary resistance and reactance of 5Ω and 15Ω...
A 20 kVA single phase transformer 4800/480V has primary resistance and reactance of 5Ω and 15Ω respectively, while the resistance and reactance of secondary winding is 0.1Ω and 0.15 Ω respectively. Calculate: (i) The parameter referred to primary side of transformer and draw the equivalent circuit (ii) The approximate value of secondary voltage at full load power factor of 0.8 lagging if 4.8kV primary supply
Plate values ​​of a three-phase transformer are given below: 1600 kVA, 15 kV / 400 V,...
Plate values ​​of a three-phase transformer are given below: 1600 kVA, 15 kV / 400 V, 50 Hz, io = 1.2%; ukN = 6%, idle losses 2450 W, rated copper losses of power 14500 W; Dy5. a) Calculate primary and secondary line and phase currents. b) Secondary at 75% load in power factor with 0.85 inductance and 0.85 capacity calculate the voltage separately. Compare and interpret the results. capacity at what time of day can the upload be seen? To...
Plate values ​​of a three-phase transformer are given below: 1600 kVA, 15 kV / 400 V,...
Plate values ​​of a three-phase transformer are given below: 1600 kVA, 15 kV / 400 V, 50 Hz, io = 1.2%; ukN = 6%, idle losses 2450 W, rated copper losses of power 14500 W; Dy5. a) Calculate primary and secondary line and phase currents. b) Secondary at 75% load in power factor with 0.85 inductance and 0.85 capacity calculate the voltage separately. Compare and interpret the results. capacity at what time of day can the upload be seen? To...
A synchronous generator 480-V, 50-Hz, Y-connected, six-pole has a power rating of 50 kVA at pf...
A synchronous generator 480-V, 50-Hz, Y-connected, six-pole has a power rating of 50 kVA at pf 0.8 lagging. The synchronous Reactance Generator is 1.0 Ω per-phase. This Generator is connected to the 45 kW steam turbine. The friction loss and the core generators are respectively 1.5 kW and 1.0 kW. Question : Draw a Capability curves!
Suppose a power plant produces 811 kW of power and is to send that power for...
Suppose a power plant produces 811 kW of power and is to send that power for many miles over a copper wire with a total resistance of 12.0 Ω. If the power is sent across the copper wires at 48.0 kV rms, how much current flows through the wires? If the power is sent across the copper wires at 48.0 kV rms, what is the power dissipated due to the resistance of the wires at this current? What percent of...
An ideal transformer has 100 turns on its primary coil and 200 turns on its secondary...
An ideal transformer has 100 turns on its primary coil and 200 turns on its secondary coil. If 120 V at 2.0 A is applied to the primary, (a) What voltage is present in the secondary? (b) What current is present in the secondary? (c) What is the output power? (d) Is this a step-up or step-down transformer? (e) Is the input power the same, larger or smaller than the output power?
An ideal step-down transformer has a primary coil of 370 turns and a secondary coil of...
An ideal step-down transformer has a primary coil of 370 turns and a secondary coil of 25 turns. Its primary coil is plugged into an outlet with 115 V(AC), from which it draws an rms current of 0.69 A. What is the voltage in the secondary coil? Calculate the rms current in the secondary coil. Assuming that the transformer secondary is driving a resistive load, calculate the average power dissipated in the resistor.