Question

The symmetrical components of the phase c phase voltages at the load side are given: zero...

The symmetrical components of the phase c phase voltages at the load side are given:

zero = 100 +j5 volts

Positive = 100 + j 100 volts

Negative = 100 - j100 V

If the system is a 3phase, 3 wire with loads

Zan = 1.7327 cis (1.6535)

Zbn = 1.7327 cis (-56.654)

Zcn = 3 cis (-29.0452) and

connected to a balanced line impedance of 20 + j15 ohms, with the generating source, determine:

a. The line voltages at the source side.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A balanced ?-connected load has an impedance of 60+ j45 ? per phase. The load is...
A balanced ?-connected load has an impedance of 60+ j45 ? per phase. The load is fed through a line having an impedance of 0.8+ j0.6 ? per line. The phase voltage at the terminals of the load is ???????? = 480 ?? . The sequence is positive. Use AB v as the reference at the load. The source is required to be calculated for either Wye or Delta connection. a) Draw the 3-phase system b) Draw the a-phase equivalent...
A 70.7 (line voltage) three phase star connected source is connected to a balanced delta load...
A 70.7 (line voltage) three phase star connected source is connected to a balanced delta load having impedance of 14.14 + j14.14 ohms for each phase. Assuming abc sequence, find a) Line currents b) Total 3 phase power
A 100 MVA, 13.2 kV three phase generator (G) having a synchronous reactance of 10% is...
A 100 MVA, 13.2 kV three phase generator (G) having a synchronous reactance of 10% is connected to a three phase Y-Y transformer T1 which feeds a 132 kV 10 miles transmission line having an impedance per phase of 2 + j5 ?/mile. At the receiving end of the transmission line is a Y-Y step down transformer T2. Three loads are connected to the secondary side of the transformer T2. Loads are as follows: Load#1 40 MVA at 0.8 pf...
A balanced wye-connected three-phase source has line-to-neutral voltages of 400 V rms. - Find the rms...
A balanced wye-connected three-phase source has line-to-neutral voltages of 400 V rms. - Find the rms line-to-line voltage magnitude. - If this source is applied to a wye-connected load composed of three 33 Ω resistances, find the rms line-current magnitude. - If this source is applied to a wye-connected load composed of three 33 Ω resistances, find the total power delivered.
The magnitude of the phase voltage of an ideal balanced three-phase Y-connected source is 110 V...
The magnitude of the phase voltage of an ideal balanced three-phase Y-connected source is 110 V . The source is connected to a balanced Y-connected load by a distribution line that has an impedance of 0.1+0.8i Ω/ϕ . The load impedance is 20.2+14.8i Ω/ϕ . The phase sequence of the source is acb. Use the a-phase voltage of the source as the reference. Part A: Specify the magnitude and phase angle of the line current IaA. Part B: Specify the...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V transformer bank. The equivalent impedance of each transformer referred to the high voltage side is 0.3 + j0.4 ohms. The transformer delivers 40 kW to the load at 0.8 p.f. leading. a) Determine the phase and the line currents at the primary and the secondary sides. b) Draw the equivalent per-phase circuit refereed to the primary side and determine the primary volt
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V transformer bank. The equivalent impedance of each transformer referred to the high voltage side is 0.3 + j0.4 ohms. The transformer delivers 40 kW to the load at 0.8 p.f. leading. a) Determine the phase and the line currents at the primary and the secondary sides. b) Draw the equivalent per-phase circuit refereed to the primary side and determine the primary volt
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT