Question

A signal described by y(t) = .25*sin(6000*t) + cos(3500*t) was sampled with fs = 1 kHz....

A signal described by y(t) = .25*sin(6000*t) + cos(3500*t) was sampled with fs = 1 kHz. Determined:

a) Whether this signal was aliased. Provide the spectral plot (magnitude versus frequency)
b) If the signal proved to be aliased, find the right sampling rate
c) Provide the spectral plot indicating the right frequencies of the signal

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The signal x(t)=sinc2(100t) is sampled with frequency fs=150sample/sec 1. Determine the spectral representation of the sampled...
The signal x(t)=sinc2(100t) is sampled with frequency fs=150sample/sec 1. Determine the spectral representation of the sampled signal (n=-3 to n=3). 2. Plot the spectral representation of the sampled signal and determine if the signal has aliasing. 3. Determine the minimum frequency of sampling (Nyquist sampling frequency) so that the signal can be reconstructed using an ideal low pass filter. Justify your answer.
Question : Design the low and high pass filter for the signal, x(t) = 10 sin...
Question : Design the low and high pass filter for the signal, x(t) = 10 sin (10 t) + 1 sin (1000 t) by MATLAB Is below answer right? at ?High pass , 5row shouldn't this change from sin(100*t) ? sin(1000*t) x = 10*sin(10*t) + 1*sin(100*t); ?   x = 10*sin(10*t) + 1*sin(1000*t); ??? ..................................................................................................................................................... ?Low pass clc; rng default Fs=2000; t=linspace(0,1,Fs); x=10*sin(10*t)+sin(1000*t)%given signal n=0.5*randn(size(t));%noise x1=x+n; fc=150; Wn=(2/Fs)*fc; b=fir1(20,Wn,'low',kaiser(21,3)); %fvtool(b,1,’Fs’,Fs) y=filter(b,1,x1); plot(t,x1,t,y) xlim([0 0.1]) xlabel('Time (s) ') ylabel('Amplitude') legend('Original Signal','Filtered Data')...
Given signal x(t) = sinc(t): 1. Find out the Fourier transform of x(t), find X(f), sketch...
Given signal x(t) = sinc(t): 1. Find out the Fourier transform of x(t), find X(f), sketch them. 2. Find out the Nyquist sampling frequency of x(t). 3. Given sampling rate fs, write down the expression of the Fourier transform of xs(t), Xs(f) in terms of X(f). 4. Let sampling frequency fs = 1Hz. Sketch the sampled signal xs(t) = x(kTs) and the Fourier transform of xs(t), Xs(f). 5. Let sampling frequency fs = 2Hz. Repeat 4. 6. Let sampling frequency...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...