Question

A 3-phase, 40 MVA, 13.8 kV, 60 Hz, ?-connected alternator requires field current of 250 A...

A 3-phase, 40 MVA, 13.8 kV, 60 Hz, ?-connected alternator requires field current of 250 A to produce an open circuit rated voltage while a field current of 150 A is required to produce short circuit rated armature current. Neglect armature resistance. Determine the Synchronous Reactance (Xs).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 3-phase, 1.2 MVA, Y-connected, 6.6 KV, 6-poles, 60 HZ, synchronous generator has a synchronous reactance...
A 3-phase, 1.2 MVA, Y-connected, 6.6 KV, 6-poles, 60 HZ, synchronous generator has a synchronous reactance of 30W and negligible resistance. The generator is connected to an infinite bus at 6.6 KV and 60 Hz. a)Determine the excitation voltage (Ea) when the machine is delivering rated power at o.8 PF lagging. b)The field excitation current is increased by 10% without changing the power input from the prime mover. Find the stator current (Ia), the power factor and the reactive power...
A 125 MVA 11 kV three phase 50 Hz synchronous generator has a synchronous reactance of...
A 125 MVA 11 kV three phase 50 Hz synchronous generator has a synchronous reactance of 1.33 p.u. The generator achieves rated open circuit voltage at a field current of 325 A. The generator is connected to a network with an equivalent line-line voltage of 11 kV and an equivalent impedance of 0.17 pu on the generator base. The generator is loaded to a real power of 110 MW. a- Find the generated voltage Eaf in p.u. such that the...
A 1200 kVA, 2.3 kV, 3-phase, star - connected alternator has a resistance of 0.401 /phase...
A 1200 kVA, 2.3 kV, 3-phase, star - connected alternator has a resistance of 0.401 /phase and a synchronous reactance of 3.21 /phase. If the generator is supplying a load at a power factor of 0.8 lagging and at rated KVA, calculate the change in line voltage at the output terminals of the generator if the load is suddenly disconnected. Assume the speed and the excitation current is to remain unchanged.
A 3-phase, 5 MVA, kV, 60 Hz synchronous machine has a synchronous reactance of 10 ohms...
A 3-phase, 5 MVA, kV, 60 Hz synchronous machine has a synchronous reactance of 10 ohms per phase. The machine is connected to kV, 60 Hz bus and is operated as synchronous condenser (synchronous motor at no-load condition) a. For normal excitation (excitation voltage terminal voltage), find the line current. Draw the phasor diagram b. If the excitation is increased to 150% of the normal excitation, find the line current and reactive power delivered or absorbed by the bus. Draw...
A two-pole Y-connected generator rated at 13.8 kV, 20 MVA, 0.8 p.f. leading is running at...
A two-pole Y-connected generator rated at 13.8 kV, 20 MVA, 0.8 p.f. leading is running at 1800 rpm. The generator has a synchronous reac- tance of 8 Ω per phase (at 60 Hz) and a negligible armature resistance per phase. The generator is operated in parallel with an interconnected power network. Compute the following: (i) What is the torque angle of the generator at rated conditions? (ii) How many MW of power this generator can deliver?
a) A three phase transformer rated at 30 MVA 10 kV(Δ)/1 kV(Y) is supplying a load...
a) A three phase transformer rated at 30 MVA 10 kV(Δ)/1 kV(Y) is supplying a load at the low voltage side. The load absorbs 5 MVA, 0.7 power factor lagging at line to line voltage 0.9 kV. The transformer has an equivalent reactance 0.05 Ω/phase. Assuming 10 MVA and 1 kV as base value, draw the per unit diagram for the system. Find the Line to Line voltage at the primary side of the transformer. b) A three-phase synchronous generator...
A 3 phase 11 kv,25 mva, 60 Hz salient pole synchronous motor is running from a...
A 3 phase 11 kv,25 mva, 60 Hz salient pole synchronous motor is running from a 11 Kv, 60 Hz balanced three phase supply the meachince reactances are Xd=1.2 pu and Xq=0.6 pu ,neglect the meachanicalloss and armature copper loss the maximum power input is obtained with no field excitation determine the power factor of motor
A three-phase, 9,375 kVA, 13.8 kV, 4-pole, 60 Hz, Y-connected synchronous generator has a synchronous reactance,...
A three-phase, 9,375 kVA, 13.8 kV, 4-pole, 60 Hz, Y-connected synchronous generator has a synchronous reactance, Xs = 17.9, and is connected to an infinite bus at rated voltage. If the rotational and electrical losses are negligivle, what is Ia, Ef, delta, theta, Tdrive, Phasor diagram, and power flow diagram (label completely with numerical values for, A) the machine as a generator; the prime-throttle is opened and If is adjusted so that the machine delivers rated kVA, 0.8 pf lagging,...
A balanced, symmetrical, round-rotor, 3-phase, 60 Hz, 2-pole, 100MVA, 13.8kV, synchronous generator is being driven at...
A balanced, symmetrical, round-rotor, 3-phase, 60 Hz, 2-pole, 100MVA, 13.8kV, synchronous generator is being driven at synchronous speed. During tests, an IFNL (field current required to produced rated terminal voltage under open circuit) of 150A and an IFSC (field current required to produced rated armature current under short circuit) of 100A were obtained. Use a linear model and neglect the armature resistance for the following calculations. a) What field current is needed to maintain rated terminal voltage when the generator...
A 200kVA, 480v, 50Hz, star connected synchronous generator with a rated field current of 5A was...
A 200kVA, 480v, 50Hz, star connected synchronous generator with a rated field current of 5A was tested at rated speed and the following data were taken: 1. The open circuit terminal voltage of the generator was 540v at rated field current. 2. The short circuit line current was 300A at rated current. 3. With the machine at standstill, a dc voltage of 10v was applied between two of the generator terminals, a current of 25A was measured. Determine the values...