Question

Q 4. A metal block of heat capacity 600 J K-1 loses 1 M.J of heat...

Q 4. A metal block of heat capacity 600 J K-1 loses 1 M.J of heat energy to its surroundings. Find the decrease in temperature.

Q5. One mega joule of heat energy is supplied to a piece of iron and raises its temperature from 20?C to 200?C. Find the mass of the piece of iron.( Specific heat capacity of iron =451Jkg-1K-1

Q6. 30grams of water at 100?C are added to 100 grams of water at 20?C. If there is no heat loss to the surroundings, what is the resultant temperature of the mixture?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) The molar heat capacity of lead is 26.44 J K-1 mol-1. How much energy must...
(a) The molar heat capacity of lead is 26.44 J K-1 mol-1. How much energy must be supplied (by heating) to 100 g of lead to increase it’s temperature by 10.0°C? (b) The molar heat capacity of sodium is 28.24 J K-1 mol-1. What is its specific heat capacity? (c) The specific heat capacity of copper is 0.384 J K-1 g-1. What is its molar heat capacity?
Q8 a) Define (i) Specific Heat Capacity, (ii) Specific Latent Heat. b) 500g of water at...
Q8 a) Define (i) Specific Heat Capacity, (ii) Specific Latent Heat. b) 500g of water at temperature of 15°C is placed in a freezer. The freezer has a power rating of 100W and is 80% efficient. (i) Calculate the energy required to convert the water into ice at a temperature of -20°C. (ii) How much energy is removed every second from the air in the freezer? (iii) How long will it take the water to reach a temperature of -20°C?...
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are...
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are necessary to raise the temperature of a 1.05 −kg block of iron from 28.0 ∘Cto 85.0 ∘C? 2. A 1.80-g sample of phenol (C6H5OH) was burned in a bomb calorimeter whose total heat capacity is 11.66 kJ/∘C. The temperature of the calorimeter plus contents increased from 21.36∘Cto 26.37∘C. A. Write a balanced chemical equation for the bomb calorimeter reaction. B. What is the heat...
1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How...
1. A metal sample, at 20. degree Celsius, has a heat capacity of 0.25 J/C. How much heat it must absorb to increase its temperature to 53 degree Celsius? 2. In a coffee-cup calorimeter, 50.0 g hot water at 60.0 C was mixed with 50.0 g cold water at 20.0 C. If the final temperature is 36.9, what is the heat capacity of the calorimeter in J/C? Specific heat of water is 4.184 J/(g C) 3. Green line of Hg...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
one piece of iron, specific heat capacity of 0.450 J/g•˚C, has a temperature of 129˚C. Another...
one piece of iron, specific heat capacity of 0.450 J/g•˚C, has a temperature of 129˚C. Another piece of iron has a mass exactly double the mass of the first piece, and its temperature is 45˚C. Both pieces are put inside a calorimeter that has negligible heat capacity. Calculate the final temperature of the calorimeter and its contents.
150 grams of boiling water (temperature 100°C, heat capacity 4.2 J/gram/K) are poured into an aluminum...
150 grams of boiling water (temperature 100°C, heat capacity 4.2 J/gram/K) are poured into an aluminum pan whose mass is 970 grams and initial temperature 25°C (the heat capacity of aluminum is 0.9 J/gram/K). (a) After a short time, what is the temperature of the water? (b) What simplifying assumptions did you have to make? The thermal energy of the aluminum doesn't change. Energy transfer between the system (water plus pan) and the surroundings was negligible during this time. The...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
1. A 74.20 kg piece of copper metal is heated from 21.5°C to 335.1°C. Calculate the...
1. A 74.20 kg piece of copper metal is heated from 21.5°C to 335.1°C. Calculate the heat absorbed (in kJ) by the metal. 2. A sheet of gold weighing 10.9 g and at a temperature of 17.3°C is placed flat on a sheet of iron weighing 23.9 g and at a temperature of 52.2°C. What is the final temperature of the combined metals? Assume that no heat is lost to the surroundings. (Hint: The heat gained by the gold must...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT