Question

Using Quartus II and the DE2 board, design and demonstrate a 3-bit up-counter; use D flip...

Using Quartus II and the DE2 board, design and demonstrate a 3-bit up-counter; use D flip flops for this project. Use one of the debounce switches for a clock and 3 LEDs to indicate the count. Implementing PRE and CLR will improve your design.

1. Please hand in a schematic and functional and timing simulation of your circuit.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Design a circuit for a synchronous 4-bit counter. Your counter should count up starting from 0...
Design a circuit for a synchronous 4-bit counter. Your counter should count up starting from 0 to 9 (00002 to 10012) and then wind back to 0 (00002) – after 9, it should go back to 0. Use 4 JK flip-flops and any other gates you need. Include your design documentation in your submission: a. Truth table b. Simplification (show your work) 2. Build this circuit in Logisim. Please label each gate, including flip-flops. You may need the following wiring...
What design is more effective a n 3 - Bit sequential counter with T Flip-Flops or...
What design is more effective a n 3 - Bit sequential counter with T Flip-Flops or a 3 - Bit sequential counter with D Flip-Flops. Why? Explain.
Design a counter which counts in the sequence that has been assigned to you. Use D...
Design a counter which counts in the sequence that has been assigned to you. Use D flip flops and NAND gates. Simulate your design using SimUaid. Submit the state table, D flip-flop input equations, and transition graph determined in Part 6. The D flip-flop equations can be derived using Karnaugh maps or using LogicAid by entering a state table with zero input variables. Sequence: 000,100,001,110,101,111,(repeat) 000,... Also, please answer the following questions: How can a D flip-flop be set to...
Ripple Counters and T-FFs. (a) Design a 5-bit ripple down-counter using T Flip-Flops and no other...
Ripple Counters and T-FFs. (a) Design a 5-bit ripple down-counter using T Flip-Flops and no other components. (b) Design a 5-bit ripple up-counter using T Flip-Flops and no other components. (c) What limits the maximum counting speed of your ripple counters? (d) Design a T Flip-Flop using only a D flip-flop with no extra logic gates.
Design 3 - Bit sequential counter with D Flip-Flops. Provide the below: 1. State Diagram: 2....
Design 3 - Bit sequential counter with D Flip-Flops. Provide the below: 1. State Diagram: 2. State Table: 3. K-maps and equations: 4. Logic Diagram:
Using T-Flip-flops, design a 3-bit register/counter circuit with bits [A2 A1 A0]. The circuit operations are...
Using T-Flip-flops, design a 3-bit register/counter circuit with bits [A2 A1 A0]. The circuit operations are described in the following table. Show all design details, i.e., write down steps and equations and draw the detailed circuit diagram. S2 S1 S0 Operation 0 0 0 No change 0 0 1 Rotate left 0 1 0 Rotate right 0 1 1 Reset 1 0 0 Set 1 0 1 Count down 1 1 0 Count up 1 1 1 Load external bits...
Use JK Flip Flop to design a 2-bit synchronous counter (up counter) that counts down as...
Use JK Flip Flop to design a 2-bit synchronous counter (up counter) that counts down as given: AB = 01, 11, 00, 10, and then again 01. Show the design steps (e.g state table, j and k inputs for k-maps etc) and draw the final circuit.
Design a 6-bit, shift-right register with D flip flops, and use it to implement a circuit...
Design a 6-bit, shift-right register with D flip flops, and use it to implement a circuit that detects the sequence “010010” (the rightmost bit is the first arriving). Information shifts one position right when a positiv edge of clk occurs The circuit has the following inputs and outputs (use exactly these names for inputs and outputs. Respect upper and lower case): clk: Input. Clock signal. RST: Reset signal. When RST = 1 flip flops are reset to 0. IN: Data...
Design 3 - Bit sequential counter with T Flip-Flops. Provide the below: 1. State Diagram: 2....
Design 3 - Bit sequential counter with T Flip-Flops. Provide the below: 1. State Diagram: 2. State Table: 3. K-maps and equations: 4. Logic Diagram:
Design an even parity detection circuit. A parity bit is an error checking mechanism. Your circuit...
Design an even parity detection circuit. A parity bit is an error checking mechanism. Your circuit will count the number of 1’s in a stream of bits. If the number of 1’s is even, the circuit turns on an output called Y. Assume a single bit at each cycle – call the input X. Do not use an accumulator or counter. Design the even parity detection circuit using J-K flip-flops. Your answer must include: a. The state diagram. b. The...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT