Question

Given an RLC series circuit as shown in Figure Q2(b), where L = 5/3 H, R...

Given an RLC series circuit as shown in Figure Q2(b), where L = 5/3 H, R = 10 Ω , C = 1/30 F, and E(t) = 300 V. A): Find the charge across the capacitor in an RLC series circuit. Assume the initial charge on the capacitor is 0 C and the initial current is 9 A. B): What happens to the charge on the capacitor over time? (Hint: Explain the meaning on the answer obtained in

I NEED TO DO IN MATLAB SIMULATION PLEASE SEND ME THE CODE OF MATLAB OF THIS QUESTION

Homework Answers

Answer #1

CODE:

RESULT:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given an RLC series circuit as shown in Figure Q2(b), where L = 5/3 H, R...
Given an RLC series circuit as shown in Figure Q2(b), where L = 5/3 H, R = 10 Ω , C = 1/30 F, and E(t) = 300 V. A): Find the charge across the capacitor in an RLC series circuit. Assume the initial charge on the capacitor is 0 C and the initial current is 9 A. B): What happens to the charge on the capacitor over time? (Hint: Explain the meaning on the answer obtained in
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25...
The RLC series circuit illustrated in the simulation has R = 1.49 Ω, L = 1.25 H, and C = 198 µF. The applied AC voltage has a frequency of f = 60 Hz and a voltage of Δv = 120 V. 1-Find the inductive reactance, capacitive reactance, and impedance. XL = ........ Ω XC = ........ Ω Z = ......... Ω 2-Find the phase difference between current and voltage............. ° 3-Find the voltages ΔvR, ΔvL, and ΔvC. ΔvR =...
In a series RLC circuit, R = 100 Ω, L = 50 H and C =...
In a series RLC circuit, R = 100 Ω, L = 50 H and C = 2 μF. If the alternating emf applied is ε(t) = 20 Sin(5πt), find the rms current and the power factor for the circuit.  
In a series RLC circuit, R = 100 Ω, L = 50 H and C =...
In a series RLC circuit, R = 100 Ω, L = 50 H and C = 2 μF. If the alternating emf applied is ε(t) = 20 Sin(5πt), find the rms current and the power factor for the circuit.
The followings are parameters of a RLC-series circuit. Use the given information to answer. R =...
The followings are parameters of a RLC-series circuit. Use the given information to answer. R = 7.5 Ω L = 8.2 x 10-3 H C = 1.0 x 10-5 F Frequency f = 450 Hz Peak voltage V0 = 15V Find the following: (a) rms voltage across the resistor (b) rms voltage across the inductor (c) rms voltage across the capacitor (d) power factor of the circuit (e) phase angle (f) power dissipated (g) resonant frequency of the circuit
In an LRC series circuit, the components have the following Values: L=0.4 H, C=600 μF, R=200...
In an LRC series circuit, the components have the following Values: L=0.4 H, C=600 μF, R=200 Ω, V=30 V and frequency 1.5 kHz. Calculate the impedance of the circuit Calculate the maximum voltage across the resistor, the inductor and the capacitor
A series RLC circuit with a resistance of 122.0 Ω has a resonance angular frequency of...
A series RLC circuit with a resistance of 122.0 Ω has a resonance angular frequency of 3.4 ✕ 105 rad/s. At resonance, the voltages across the resistor and inductor are 60.0 V and 40.0 V, respectively. (a) Determine the values of L and C. L = ............. H C = ..................F (b) At what frequency does the current in the circuit lag the voltage by 45°? ......................Hz
A series RLC circuit consists of a 65 Ω resistor, a 0.52 H inductor, and a...
A series RLC circuit consists of a 65 Ω resistor, a 0.52 H inductor, and a 35 μF capacitor. It is attached to a 120 V/60 Hz power line. A. What is the peak current II at this frequency? B. What is the phase angle ϕ? C. What is the average power loss?
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?