Question

4-bit signed numbers X = x3 x2 x1 x0 Y = y3 y2 y1 y0 need...

4-bit signed numbers

X = x3 x2 x1 x0

Y = y3 y2 y1 y0

need a logic simulation to read signed numbers x3, and y3.

if x3 and y3 are equal to 0, read the number as is.

if x3 and y3 are equal to 1, take the 2's complement of number.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2)...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2) b) Determine fx(x|y=y2) Ans: 1d(x-x2) c) Determine fy(y|x=x1) Ans: (1/3)d(y-y1)+(2/3)d(y-y3) d) Determine fx(y|x=x2) Ans: (3/9)d(y-y1)+(1/9)d(y-y2)+(5/9)d(y-y3) 4.4-JG2 Given fx,y(x,y)=2(1-xy) for 0 a) fx(x|y=0.5) (Point Conditioning) Ans: (4/3)(1-x/2) b) fx(x|0.5
Consider the following equations: y1 = a1y2 +a2y3 +x1 +x2 +e1 (1) y2 = by1+2x3+x1+e2 (2)...
Consider the following equations: y1 = a1y2 +a2y3 +x1 +x2 +e1 (1) y2 = by1+2x3+x1+e2 (2) y3 =cy1+e3 (3) Here a1, a2, b, c are unknown parameters of interest, which are all posi- tive. x1, x2, x3 are exogenous variables (uncorrelated with y1, y2 or y3). e1, e2, e3 are error terms. (a) In equation (1), why y2,y3 are endogenous? (b) what is (are) the instrumental variable(s) for y2, y3 in equation (1)? (no need to explain why) (c) In...
Complete the following fact. Suppose X,Y are independent RVs and x1 < x2 and y1 <...
Complete the following fact. Suppose X,Y are independent RVs and x1 < x2 and y1 < y2 are real numbers. Then P(x1 <_?_≤ x2, _?__ <Y≤y2)=P(x1<X≤ _?_ )(y1<+_?_ ≤y2). Please fill in question marks.
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2)...
Write vectors in R2 as (x,y). Define the relation on R2 by writing (x1,y1) ∼ (x2,y2) iff y1 − sin x1 = y2 − sin x2 . Prove that ∼ is an equivalence relation. Find the classes [(0, 0)], [(2, π/2)] and draw them on the plane. Describe the sets which are the equivalence classes for this relation.
(a) Show that the parametric equations x = x1 + (x2 − x1)t,    y = y1 +...
(a) Show that the parametric equations x = x1 + (x2 − x1)t,    y = y1 + (y2 − y1)t where 0 ≤ t ≤ 1, describe (in words) the line segment that joins the points P1(x1, y1) and P2(x2, y2). (b) Find parametric equations to represent the line segment from (−1, 6) to (1, −2). (Enter your answer as a comma-separated list of equations. Let x and y be in terms of t.)
F(x,y) = (x2+y3+xy, x3-y2) a) Find the linearization of F at the point (-1,-1) b) Explain...
F(x,y) = (x2+y3+xy, x3-y2) a) Find the linearization of F at the point (-1,-1) b) Explain that F has an inverse function G defined in an area of (1, −2) such that that G (1, −2) = (−1, −1), and write down the linearization to G in (1, −2)
X1. X2. X3 Y1. 30. 40 52 (33.46) (41.83)(46.71) Y2. 18. 20. 15 (14.54)(18.18)(20.29) The table...
X1. X2. X3 Y1. 30. 40 52 (33.46) (41.83)(46.71) Y2. 18. 20. 15 (14.54)(18.18)(20.29) The table to the right contains observed values and expected values in parentheses for two categorical variables, X and Y, where variable X has three categories and variable Y has two categories. Use the table to complete parts (a)Compute the value of the chi-square test statistic. X2/0= (round three decimal places) (b)Test the hypothesis that X and Y are independent at the a=0.1 level of significance....
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2)...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2) y=0, find a second, linearly independent solution y2. Find the Laplace transform. L{t2 * tet} Thanks for solving!
For x1=2 x2=1.5 and x3=5 data drawn (iid) from f_x(x, theta)= [x^3 exp(-x/theta)]/[6 theta^4] when x>0...
For x1=2 x2=1.5 and x3=5 data drawn (iid) from f_x(x, theta)= [x^3 exp(-x/theta)]/[6 theta^4] when x>0 find the MLE for theta?
Suppose that X1, X2,   , Xn and Y1, Y2,   , Yn are independent random samples from populations with...
Suppose that X1, X2,   , Xn and Y1, Y2,   , Yn are independent random samples from populations with means μ1 and μ2 and variances σ12 and σ22, respectively. It can be shown that the random variable Un = (X − Y) − (μ1 − μ2) σ12 + σ22 n satisfies the conditions of the central limit theorem and thus that the distribution function of Un converges to a standard normal distribution function as n → ∞. An experiment is designed to test...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT