Question

Draw the equivalent circuit of a transformer. Explain how you will simplify it (referred to secondary...

  1. Draw the equivalent circuit of a transformer. Explain how you will simplify it (referred to secondary side).

Homework Answers

Answer #1

If you have any doubt ask me if understand please give valuable rating thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the transformer equivalent circuit components referred to the LV side and sketch the equivalent circuit....
Determine the transformer equivalent circuit components referred to the LV side and sketch the equivalent circuit. Calculate the transformer voltage regulation at full load with load power factor of 0.9 lagging. Below is the test result which can be used to determine the value of the components for the equivalent circuit. Power of the transformer = 1 kVA Open circuit test: LV winding Voltage = 110 V LV side ammeter = 690 mA LV side wattmeter = 18 W HV...
Reorganize resistance, R and inductance, L equivalent from a transformer secondary circuit for a resistive load...
Reorganize resistance, R and inductance, L equivalent from a transformer secondary circuit for a resistive load and explain inductive loss how is associated in the secondary circuit of the transformer?
A 20 kVA single phase transformer 4800/480V has primary resistance and reactance of 5Ω and 15Ω...
A 20 kVA single phase transformer 4800/480V has primary resistance and reactance of 5Ω and 15Ω respectively, while the resistance and reactance of secondary winding is 0.1Ω and 0.15 Ω respectively. Calculate: (i) The parameter referred to primary side of transformer and draw the equivalent circuit (ii) The approximate value of secondary voltage at full load power factor of 0.8 lagging if 4.8kV primary supply
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V transformer bank. The equivalent impedance of each transformer referred to the high voltage side is 0.3 + j0.4 ohms. The transformer delivers 40 kW to the load at 0.8 p.f. leading. a) Determine the phase and the line currents at the primary and the secondary sides. b) Draw the equivalent per-phase circuit refereed to the primary side and determine the primary volt
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V transformer bank. The equivalent impedance of each transformer referred to the high voltage side is 0.3 + j0.4 ohms. The transformer delivers 40 kW to the load at 0.8 p.f. leading. a) Determine the phase and the line currents at the primary and the secondary sides. b) Draw the equivalent per-phase circuit refereed to the primary side and determine the primary volt
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω,...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω, Xp= 4.0 Ω, Rs= 2.5 Ω, Xs= 2.0 Ω, Rc= 60 KΩ, and Xm = 15 KΩ. The transformer is operating at full load with a power factor of 0.707 lagging. The magnetizing branch impedance can be ignored. a) Draw the transformer’s equivalent T-circuit, b) Find the equivalent winding impedance referred to the high side, c) Calculate the primary and secondary currents, d) Determine...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω,...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω, Xp= 4.0 Ω, Rs= 2.5 Ω, Xs= 2.0 Ω, Rc= 60 KΩ, and Xm = 15 KΩ. The transformer is operating at full load with a power factor of 0.707 lagging. The magnetizing branch impedance can be ignored. a) Draw the transformer’s equivalent T-circuit, b) Find the equivalent winding impedance referred to the high side, c) Calculate the primary and secondary currents, d) Determine...
A single phase 3kVA 480/240 V 50 Hz transformer has the following parameters: High voltage side:...
A single phase 3kVA 480/240 V 50 Hz transformer has the following parameters: High voltage side: r1 = 0.25 Ω Xl1 = 0.75 Low voltage side: r2 = 0.05 Ω Xl2 = 0.18 a) Draw the equivalent circuit with quantities referred to the low voltage side; b) Determine the voltage regulation when the transformer is supplying full load at 240 Vrms and 0.9 power factor lagging; c) If the load terminals are accidentally short-circuited determine the currents in the high...
A transformer has a primary-to-secondary turns ratio of 100:1. The voltage on the primary side is...
A transformer has a primary-to-secondary turns ratio of 100:1. The voltage on the primary side is 27.7 kv.a.c. at 60.0 Hz ( assume 60.0 Hz when treating electric power topics). A load is connected across the secondary winding. Assume that the transformer is ideal. (a) Suppose that the electric utility supplied 27.7 kv.d.c. rather than 27.7 kv.a.c. How much power would the transformer’s secondary winding deliver to the load in this case? (b). The transformer’s primary winding is supplied by...
A series RLC circuit is connected to a 240 V AC generator that operates at 99...
A series RLC circuit is connected to a 240 V AC generator that operates at 99 Hz. In the circuit, R = 4.325 kΩ and C = 0.71 mF. You must have a circuit diagram, wherever necessary, to receive full credit on this question. (a) (10 points) Determine the inductance, L, such that the current in the circuit is 19.1 mA. (b) (6 points) Using the value determined for L in part (a), determine the frequency at which the current...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT