Question

Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz,...

Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz, and a pass band gain of 2 V/V. Use a 741 Op Amp. If using Table I, use a capacitor value of 0.1 μF for C and C1, otherwise you may use any capacitors available in the lab. If applicable, make an excel worksheet showing the calculations required for the above design.  Choose appropriate real resistor values for the designed circuit and simulate this circuit for input AC amplitude of 1 V. Obtain an AC response plot of the output for a frequency range of 1 Hz to 100 kHz.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Design a Butterworth Sallen-Key Low Pass Filter with the critical frequency, fc = 7.23 kHz. For...
Design a Butterworth Sallen-Key Low Pass Filter with the critical frequency, fc = 7.23 kHz. For design simplification in RC network, assume equal value for capacitor, C = 22nF while R has a ratio, m = 2. Use the quality factor, Q value from the Table .
Design a Butterworth high pass filter which is 4th order. The first element of the low...
Design a Butterworth high pass filter which is 4th order. The first element of the low pass prototype shall be a capacitor C1 . The 3 dB cutoff shall be 500 KHz. RL100 , Rs=50
Using 5 nF capacitors and ideal op amps, design a high-pass unitygain Butterworth filter with a...
Using 5 nF capacitors and ideal op amps, design a high-pass unitygain Butterworth filter with a cutoff frequency of 4 kHz and a gain of at least -32 dB at 800 Hz. 30 points a) Draw a circuit diagram of the filter and label all the component values.
Design a passive RC high pass filter with a cutoff frequency of 470 Hz using a...
Design a passive RC high pass filter with a cutoff frequency of 470 Hz using a 270 pF capacitor. What is the value of the resistor? Express your answer with the appropriate units. What is the transfer function of the filter? Express your answer in terms of the variables R, C, and s. If the filter is loaded with a resistor whose value is the same as the resistor in part B, what is the transfer function of this loaded...
Design a second-order Butterworth high-pass filter with an infinite frequency gain of 0 dB and a...
Design a second-order Butterworth high-pass filter with an infinite frequency gain of 0 dB and a -3 dB frequency of 5.24 kHz. (include circuit design w/ component values)
Design an active high pass filter with a high frequency gain of 5 and a cutoff...
Design an active high pass filter with a high frequency gain of 5 and a cutoff frequency of 2kHz. Use a 0.1 uF capacitor in your design.
Calculate the cutoff point for a low pass RC filter with a series resistor valued at...
Calculate the cutoff point for a low pass RC filter with a series resistor valued at 1M Ohm, and a shunt capacitor valued at 220 pF
To analyze and design a passive, second-order bandreject filter using a series RLC circuit. A bandreject...
To analyze and design a passive, second-order bandreject filter using a series RLC circuit. A bandreject filter is needed for an equalizer, a device that allows one to select the level of amplification of sounds within a specific frequency band while not affecting the sounds outside that band. The filter should pass frequencies lower than 1.4 kHz and have a resonant frequency of 3.8 kHz. A 5.0 μF capacitor and any needed resistors and inductors are available to be used...
Second order circuit as a band pass filter. 1. Consider a series RLC circuit of your...
Second order circuit as a band pass filter. 1. Consider a series RLC circuit of your choice with AC source. Find the resonance conditions (resonant frequency, quality factor cut-off frequencies and bandwidth. Simulate(multisim) the resonance condition by experimenting with AC signal of several different frequencies and comparing the output amplitudes. You need to show graphs of simulation with several different frequencies. Demonstrate that the simulation results confirm the calculated resonance effect. Make a band pass filter from circuit in (1)....
Using a 741 op-amp for every stage, design this circuit: The input stage has a voltage...
Using a 741 op-amp for every stage, design this circuit: The input stage has a voltage gain of 10 and input impedance of 50 K?. The low pass filter stage has a Sallen-Key (VCVS) third order butterworth response and a cutoff frequency of 5KHz. The output buffer stage has a voltage gain of 10.