Question

For an LTI system h[n], the output is given by y[n] = 2δ[n-1], given that x[n]...

For an LTI system h[n], the output is given by
y[n] = 2δ[n-1],
given that
x[n] = δ[n]-2δ[n-1]+ 2δ[n-2].
a) Find the transfer function H(z) (7 Points).
b) Find the difference equation of the overall system (8 Points).
c) Given that the system is causal find h[n] (10 Points).
d) Given that the system does not have Fourier Transform, find h[n] (10 Points).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a causal LTI system described by the difference equation: y[n] = 0.5 y[n-1] + x[n]...
Consider a causal LTI system described by the difference equation: y[n] = 0.5 y[n-1] + x[n] – x[n-1] (a) Determine the system function H(z) and plot a pole-zero pattern in the complex z-plane. (b) Find the system response using partial fraction expansion when the input is x[n] = 2u[n]. Plot the result.
For the LTI system described by the following system functions, determine (i) the impulse response (ii)...
For the LTI system described by the following system functions, determine (i) the impulse response (ii) the difference equation representation (iii) the pole-zero plot, and (iv) the steady state output y(n) if the input is x[n] = 3cos(πn/3)u[n]. a. H(z) = (z+1)/(z-0.5), causal system (Hint: you need to express H(z) in z-1 to find the difference equation ) b. H(z) = (1 + z-1+ z-2)/(1-1.7z-1+0.6z-2), stable system c. Is the system given in (a) stable? Is the system given in...
An LTI system has an impulse answer of h[n] = a^(n)H[n], H[n] is the Heaviside step...
An LTI system has an impulse answer of h[n] = a^(n)H[n], H[n] is the Heaviside step function. Obtain the output y[n] from the system when the input is x[n]=H[n]. 2. Consider the discrete system defined by> y[n] - ay[n-1] =x[n] Find the output when the input is x[n] = Kb^(n)H[n], and y[-1]=y_(-1)\ Find the output when the input is x[n] = K ẟ [n], and y[-1]=a Find the impulse response when the system is initially at rest. Find the Heaviside...
Consider an LTI system whose frequency response is undesirable; the distorting system function is given as:...
Consider an LTI system whose frequency response is undesirable; the distorting system function is given as: Hdz=(1-0.8ej0.4πz-1)(1-0.8e-j0.4πz-1)(1-1.5ej0.6πz-1)(1-1.5e-j0.6πz-1) Assume the distorting function is both causal and stable. Design and examine compensation system Hc(z) such that when a signal sn is transmitted through this communication channel then perfect compensation is achieved i.e. scn=sn. b)   Determine the impulse response h[n] by using the inverse Z transform. Hz=log1+az-1+2Z-5,             z>a c) For what value of a will be the impulse response both stable and causal?...
Solve this signal problem. Suppose the output y[n] of a DT LTI system with input x[n]...
Solve this signal problem. Suppose the output y[n] of a DT LTI system with input x[n] is y[n-1] - 10/3y[n] + y[n+1] = x[n] The system is stable and the impulse response of h[n] = A1*(B1)^n*C1 + A2*(B2)^n*C2 is then, What is A1? What is B1? What is C1? What is A2? What is B2? What is C2?
The signal x[n] is the input of an LTI system with impulse function of h[n]. x[n]...
The signal x[n] is the input of an LTI system with impulse function of h[n]. x[n] = (0.4)^n u[n] and h[n] = (0.2)^n u[n]. (a) What is the DTFT of the output of the LTI system? (b) What are the Energy density spectrums of the input and output signals? (c) What would be the inverse DTFT: X(w) = 1/(1-0.25e^-j(w-2)) (d) How would part (c) differ for the DTFT: X(w) = 1/(1-0.25e^-j(w-2)) + 1/(1-0.25e^-j(w+2))
For the system given by the difference equation below: Y(n) – (3/2).Y(n-1) – Y(n-2) = -(5/2)....
For the system given by the difference equation below: Y(n) – (3/2).Y(n-1) – Y(n-2) = -(5/2). X(n-1) Find the transfer function H(z). You will need to do this manually. Find the poles and zeros of H(z). You can do this manually or use MATLAB. Plot the poles and zeros in MATLAB Is the system stable? Plot the impulse response of the system using MATLAB Plot the Step Response of the system using MATLAB Plot the frequency response of the system...
System 3 : Consider the discrete time system represented by the following difference equation: y(n) ?...
System 3 : Consider the discrete time system represented by the following difference equation: y(n) ? x(n) ? x(n ? 2) ? 0.8y(n ?1) ? 0.64 y(n ? 2) a) Draw the corresponding BLOCK DIAGRAM b) Obtain the TRANSFER FUNCTION, H(z) , for this system.   c) Calculate and plot the POLES and ZEROS of the transfer function. d) State the FREQUENCY RESPONSE Equation ,  H(ej? ) , for this system.    System 4 : Consider the discrete time system represented by...
(a) H(z) = 3z^2 + 2 + z^-1 + z^-3.What is the inverse z-transform of H(z)?...
(a) H(z) = 3z^2 + 2 + z^-1 + z^-3.What is the inverse z-transform of H(z)? (b) If H(z) in part (a) is the transfer function of a system. What is the difference equation for this system? (c) If x[n] = [ 2 ,−1, 3 ], (where n_0 = -1) What is its z-transform?
if the transfer function H(z) of a stable LTI system has two zeros at z =1+j...
if the transfer function H(z) of a stable LTI system has two zeros at z =1+j and z = 1-j and two poles at z = 0 and z = -0.5. Write the expression of H(z), if the frequency response of the system at omega (w) where w = 0 is 1. can I have help here ?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT