Question

Design a passive RC high pass filter with a cutoff frequency of 470 Hz using a...

Design a passive RC high pass filter with a cutoff frequency of 470 Hz using a 270 pF capacitor.

What is the value of the resistor? Express your answer with the appropriate units.

What is the transfer function of the filter? Express your answer in terms of the variables R, C, and s.

If the filter is loaded with a resistor whose value is the same as the resistor in part B, what is the transfer function of this loaded filter? Express your answer in terms of the variables R, C, and s.

What is the cutoff frequency of the loaded filter from part D? Express your answer with the appropriate units What is the gain in the pass band of the loaded filter from part D?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the cutoff point for a low pass RC filter with a series resistor valued at...
Calculate the cutoff point for a low pass RC filter with a series resistor valued at 1M Ohm, and a shunt capacitor valued at 220 pF
Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz,...
Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz, and a pass band gain of 2 V/V. Use a 741 Op Amp. If using Table I, use a capacitor value of 0.1 μF for C and C1, otherwise you may use any capacitors available in the lab. If applicable, make an excel worksheet showing the calculations required for the above design.  Choose appropriate real resistor values for the designed circuit and simulate this circuit...
Design an active high pass filter with a high frequency gain of 5 and a cutoff...
Design an active high pass filter with a high frequency gain of 5 and a cutoff frequency of 2kHz. Use a 0.1 uF capacitor in your design.
Please show steps. Thank you Design an identical cascade unit gain active RC low pass filter...
Please show steps. Thank you Design an identical cascade unit gain active RC low pass filter of order 4. The cut frequency for the filter is 800Hz. Use 1.0uF capacitors. a) Draw the circuit and calculate the values of R. b) Express the transfer function of the filter H(s). c) Plot the Bode diagram of the frequency response of the filter. d) Estimate the output voltage if the filter is excited with an input voltage vi(t) = sin(15000t) e) What...
Design a high-pass filter, maximally flat lumped-element filter having a cutoff at 4 GHz, and an...
Design a high-pass filter, maximally flat lumped-element filter having a cutoff at 4 GHz, and an attenuation of at least 20 dB at 3.5 GHz. The characteristic impedance is 50 Ω. (ii) Simulate your design in ADS to plot the insertion loss versus frequency.
To analyze and design a passive, second-order bandreject filter using a series RLC circuit. A bandreject...
To analyze and design a passive, second-order bandreject filter using a series RLC circuit. A bandreject filter is needed for an equalizer, a device that allows one to select the level of amplification of sounds within a specific frequency band while not affecting the sounds outside that band. The filter should pass frequencies lower than 1.4 kHz and have a resonant frequency of 3.8 kHz. A 5.0 μF capacitor and any needed resistors and inductors are available to be used...
A common use of capacitors as a reactive component is in a low-pass or high-pass filter,...
A common use of capacitors as a reactive component is in a low-pass or high-pass filter, both of which contain a resistor and a capacitor. A low-pass filter is one that passes through signals with frequencies lower than a particular cutoff frequency and causes attenuation in signals of higher frequency. A high-pass filter is one that passes through signals with frequencies higher than a certain cutoff and causes lower frequencies to attenuate, giving the two configurations their names. The cutoff...
PLEASE ANSWER QUESTION #2 Design an FIR band-pass filter with cutoff frequencies of π/ 4 and...
PLEASE ANSWER QUESTION #2 Design an FIR band-pass filter with cutoff frequencies of π/ 4 and π/ 6 . The filter’s impulse response should have 81 samples (i.e. N = 81). Use a Blackman filter window. (a) Plot the filter’s impulse response (b) Plot the magnitude of the filter’s frequency response, in dB. (i.e. 20 log(|H(e jω)|)) (c) Print out the MATLAB code used in the filter design 2. Use the filter designed in #1 to filter a random input...
Question : Design the low and high pass filter for the signal, x(t) = 10 sin...
Question : Design the low and high pass filter for the signal, x(t) = 10 sin (10 t) + 1 sin (1000 t) by MATLAB Is below answer right? at ?High pass , 5row shouldn't this change from sin(100*t) ? sin(1000*t) x = 10*sin(10*t) + 1*sin(100*t); ?   x = 10*sin(10*t) + 1*sin(1000*t); ??? ..................................................................................................................................................... ?Low pass clc; rng default Fs=2000; t=linspace(0,1,Fs); x=10*sin(10*t)+sin(1000*t)%given signal n=0.5*randn(size(t));%noise x1=x+n; fc=150; Wn=(2/Fs)*fc; b=fir1(20,Wn,'low',kaiser(21,3)); %fvtool(b,1,’Fs’,Fs) y=filter(b,1,x1); plot(t,x1,t,y) xlim([0 0.1]) xlabel('Time (s) ') ylabel('Amplitude') legend('Original Signal','Filtered Data')...
A television channel is assigned the frequency range from 54 MHz to 60 MHz. A series...
A television channel is assigned the frequency range from 54 MHz to 60 MHz. A series RLCtuning circuit in a TV receiver resonates in the middle of this frequency range. The circuit uses a 21 pF capacitor. Part A What is the value of the inductor? Express your answer to two significant figures and include the appropriate units.= 0.37 μH I found this answer. Part B In order to function properly, the current throughout the frequency range must be at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT