Question

Consider two infinite plates, both parallel to the xy plane of a coordinate system. The top...

Consider two infinite plates, both parallel to the xy plane of a coordinate system. The top plate is at the height z = +5cm and carries a uniform charge distribution of ?= +3nC/m2. The bottom plate is at height z = - 5cm and carries a uniform charge distribution of ?= -3nC/m2. The space between the plates is filled with air. Between the plates runs a long wire along the y-axis (at z=0 and x=0), carrying a current of 10A. Two 1C test charges are moving between the plates. Test charge 1 moves in y-direction at a height of z = +2cm, at a speed of 4x106 m/s. Test charge 2 moves in x-direction at a height of z = -2cm, at a speed of 3m/s. (a) Calculate the electric field between the plates and the magnitude and direction of the electric force FE exerted on each of the test charges due to that electric field. (b) Calculate the magnitude and direction of the magnetic field caused by the current through the wire at the location of the test charges, and the magnitude and direction of the magnetic force FM exerted on each of the test charges due to that magnetic field. (c) Combine the electric and magnetic forces to find the magnitude and direction of the total force on each of the test charges.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. Consider two infinite sheets parallel to the xy plane, separated by distance d, carrying charge...
a. Consider two infinite sheets parallel to the xy plane, separated by distance d, carrying charge densities +? and -?. Solve for and sketch the potential as a function of z. b. Consider two disks of radius R parallel to the xy plane, centered on the z axis and separated by distance d, carrying charge densities +? and -?. (In a real capacitor, the charge density will not be strictly uniform, but we will continue to ignore that for the...
Two oppisitely charged horizontal plates are seperated by a distance d=2cm and each has a length...
Two oppisitely charged horizontal plates are seperated by a distance d=2cm and each has a length L=5cm. The electric field between the plates a uniform and has a magnitude of E=115N/m. An electron is projected between the plates with a horizontal initial speed of v0 =103m/s as shown.Assuming this experiment is conducted in a vacuum, where will the electron strike the upper plate?
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a distance of 45.0 mm , and the potential difference between them is 365 V (A) What is the magnitude of the electric field (assumed to be uniform) in the region between the plates? (B) What is the magnitude of the force this field exerts on a particle with a charge of 2.10 nC ? (C) Use the results of part (b) to compute the...
A Suppose that two plates are set up in parallel configuration with the top plate with...
A Suppose that two plates are set up in parallel configuration with the top plate with an electric potential of 100 V and bottom plate with an electric potential of 77 V. The plates are separated by a distance of 0.1 m. (a) What is the change in potential energy of a 0.01C charge that is moved from the bottom plate to the top plate? (b) What is the direction and magnitude of electric field between the plates?
A +2nC point charge is located in between a +5nC charged flat plate of area 1.2m2...
A +2nC point charge is located in between a +5nC charged flat plate of area 1.2m2 and another point charge of -3nC. The latter is located 6mm to the right of the first (+2nC) point charge, along a line that intersects the plate at 90 . The plate is located 4.3mm from the first, (+2nC) charge. A) What is the total electric force exerted on the +2nC charge? B) What is the total electric force exerted on the -3nC charge?...
Which of the following statements correctly compare the ideal parallel-plate capacitor to the ideal solenoid? Select...
Which of the following statements correctly compare the ideal parallel-plate capacitor to the ideal solenoid? Select all that apply. A) The direction of the uniform electric field in the capacitor is parallel to the plates making up the capacitor, while the direction of the uniform magnetic field is parallel to the axis of the solenoid. B) In the ideal capacitor changing the distance between the plates does not affect the electric field. In the ideal solenoid changing the radius of...
Suppose that two plates are set up in parallel configuration with the top plate with an...
Suppose that two plates are set up in parallel configuration with the top plate with an electric potential of 100 V and bottom plate with an electric potential of 50 V. The plates are separated by a distance of 0.1 m. (a) What is the change in potential energy of a 0.01C charge that is moved from the bottom plate to the top plate? (b) What is the direction and magnitude of electric field between the plates? please show STEP...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge...
The surfaces of two large parallel conducting plates separated by 5.0 cm have uniform surface charge densities that are equal in magnitude but opposite in sign. The difference in potential between the plates is 200 V. (a) Is the positive or the negative plate at the higher potential? (b) What is the magnitude of the electric field between the plates? (c) An electron is released from rest next to the negatively charged surface. Find the work done by the electric...
1. Two charges are placed between the plates of a parallel plate capacitor. One charge is...
1. Two charges are placed between the plates of a parallel plate capacitor. One charge is +q1 and the other is q2 = +4.66mC (microC). The charge per unit area on each plate has a magnitude of sigma = 1.27×10-4C/m2. The force on q1 due to q2 equals the force on q1 due to the electric field of the parallel plate capacitor. What is the distance r between the two charges? 2. Two identical small insulating balls are suspended by...
Two long, straight, parallel wires carry current. The first wire carries I1 = 3 A to...
Two long, straight, parallel wires carry current. The first wire carries I1 = 3 A to the right and the second carries I2 = 5 A to the left. The force per length each wire exerts on the other is of magnitude 5 × 10−6 N/m. (a) Sketch the situation. On your sketch indicate the directions of the magnetic fields produced by each wire and the direction of the force exerted on each wire. Determine the distance between the wires....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT