Question

A 2 cm thick steel pipe (thermal conductivity = 43 W/[m.C]) with 6 cm inside diameter...

A 2 cm thick steel pipe (thermal conductivity = 43 W/[m.C]) with 6 cm inside diameter is being used to convey steam from a boiler to process equipment for a distance of 40 m. The inside pipe surface temperature is 115 degrees C, and the outside pipe surface temperature is 90 degrees C. Calculate the total heat loss to the surroundings under steady-state conditions.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stainless steel pipe [thermal conductivity = 17 W/(m.C)] is being used to convey heated oil....
A stainless steel pipe [thermal conductivity = 17 W/(m.C)] is being used to convey heated oil. The inside surface temperature is 13 degrees C. The pipe is 2 cm thick with an inside diameter of 8 cm. The pipe is insulated with 0.04m thick insulation [thermal conductivity = 0.035 W/(m.C)]. The outer insulation temperature is 25 degrees C. Calculate the temperature of the interface between steel and insulation, assume steady-state conditions.
A 2.5 cm inside diameter pipe is being used to convey a liquid food at 80ºC....
A 2.5 cm inside diameter pipe is being used to convey a liquid food at 80ºC. The inside convective heat transfer coefficient is 10W/(m2ºC). The pipe (0.5 cm thick) is made of steel (thermal conductivity = 43W/mºC). The outside ambient temperature is 20ºC. The outside convective heat-transfer coefficient is 100 /(m2ºC). Calculate the overall heat transfer coefficient and the heat loss from 1 m length of the pipe.
consider a 0.8 cm thick steel plate with a thermal conductivity of 50W/m-k.When the inside surface...
consider a 0.8 cm thick steel plate with a thermal conductivity of 50W/m-k.When the inside surface of the plate is subjected to a uniform heat flux 0f 5*104 w/m2 the oter surface temperature of the plate is measured to be 110c under steady operating condition a)express the differential equation and the boundary conditions for steady one dimensional heat conduction through the wall b)obtain the relation for the variation of temperature in the plate by solving the differential equation. c)evaluate the...
Steam at an average temperature of ?∞= 400°C flows through a steel pipe. The inner and...
Steam at an average temperature of ?∞= 400°C flows through a steel pipe. The inner and outer radii of the pipe are r1 = 4 cm and r2 = 4.5 cm, respectively, and the outer surface of the pipe is insulated with a layer of 50 mm thick-calcium silicate of thermal conductivity of k = 0.5 W/m.K, and is maintained at 350 °C. If the convection heat transfer coefficient on the inner surface of the pipe is h = 65...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside diameter of 100 mm with a 9 mm thick wall. The pipe is mild steel with a thermal conductivity of 80 W m-1 K-1. Covering the pipe is a 20 mm thick layer of polythene insulation with a thermal conductivity of 0.04 W m-1 K-1. The convective heat transfer coefficient of the steam is 513.4 W m-2 K-1. The convective heat transfer coefficient of...
A large steam pipe is covered with 1.5-cm-thick insulating material of thermal conductivity 0.27 J/(s m...
A large steam pipe is covered with 1.5-cm-thick insulating material of thermal conductivity 0.27 J/(s m °C). How much energy is lost every second when the steam is at 205 °C and the outside of the pipe has a temperature of 20°C? The pipe has a circumference of 7.5 m and a length of 80 m. Neglect losses through the ends of the pipe. What is the units as well?
A steam pipe is covered with 1.50 cm thick insulating material with a thermal conductivity of...
A steam pipe is covered with 1.50 cm thick insulating material with a thermal conductivity of 0.200 cal/cm·°C·s. How much energy is lost every second when the steam is at 250°C and the surrounding air is at 20.0°C? The pipe has a circumference of 800 cm and a length of 65.0 m. Neglect losses through the ends of the pipe.
A steel hot-water tank of cylindrical shape has an inside diameter of 0.600 m and inside...
A steel hot-water tank of cylindrical shape has an inside diameter of 0.600 m and inside height of 1.40 m. The tank is enclosed by a 5.00 cm thick insulating layer of glass wool whose thermal conductivity is 0.0350 W / (m·K). The insulation is covered by a thin sheet metal skin. The steel tank and the sheet metal skin have thermal conductivities that are much greater than that of the glass wool. How much electrical power (W) must be...
Calculate the rate of heat conduction (in W) through house walls that are 14.5 cm thick...
Calculate the rate of heat conduction (in W) through house walls that are 14.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 145 m2 and their inside surface is at 21.5°C, while their outside surface is at 5.00°C. How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the...
hot fluid at 230°C flows through a 1-meter pipe of 0.02m outside radius and 0.015m inside...
hot fluid at 230°C flows through a 1-meter pipe of 0.02m outside radius and 0.015m inside radius. The thermal conductivity of the pipe is 0.5 W/m.k, and the heat transfer coefficient (hi) inside is 300 W/m2 K. The pipe is located in a room at 30°C, and the heat transfer coefficient (ho) at the outer surface is 10 W/m2 k. Calculate the temperature drop (∆T) across the pipe wall.