Question

Plot the first seven values of the step response. Is the response increasing or decreasing with...

Plot the first seven values of the step response. Is the response increasing or decreasing with time? Is this what you would expect, and why?
H(z)= (z^2-z-2)/(z^2+1.5z-1)

I calculated the step response to be
y(n)= (0.5333(-2)^n+1.3333+1.8(0.5)^n)u[n]

In the plot, half of the points increasing and the other half decreasing. Is this correct because of the unstable system?  

Thanks

Homework Answers

Answer #1

clc
clear all
close all
n=0:7;
y=(0.5333*(-2).^n+1.333+1.8*(0.5).^n);
stem(n,y)
title('Step Response')
xlabel('Number of samples')
ylabel('Amplitude')

clc
clear all
close all
n=0:20;
y=(0.5333*(-2).^n+1.333+1.8*(0.5).^n);
stem(n,y)
title('Step Response')
xlabel('Number of samples')
ylabel('Amplitude')

The system is unstable because as n increase the response tends to infinity.

The condition for stability is as n--> infinity, sum of (|h(n)|)<infinity. or The system should be absolutely summable.

Here because of (-2)^n the system becomes unstable because as n increase the values increase by its power.

And the negative sign give +ve and -ve values in the response.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the LTI system described by the following system functions, determine (i) the impulse response (ii)...
For the LTI system described by the following system functions, determine (i) the impulse response (ii) the difference equation representation (iii) the pole-zero plot, and (iv) the steady state output y(n) if the input is x[n] = 3cos(πn/3)u[n]. a. H(z) = (z+1)/(z-0.5), causal system (Hint: you need to express H(z) in z-1 to find the difference equation ) b. H(z) = (1 + z-1+ z-2)/(1-1.7z-1+0.6z-2), stable system c. Is the system given in (a) stable? Is the system given in...
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?]...
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?] − 3(0.5) 2? ?[?] where u[n] is the unit step function. a) Find the z-domain transfer function ?(?). b) Draw pole-zero plot of the system and indicate the region of convergence. c) Is the system stable? Explain. d) Is the system causal? Explain. e) Find the unit step response ?[?] of the system, that is, the response to the unit step input. f) Provide...
y[n] =b(ax[n] +x[n-1]+ax[n-2]) where a&b >0. Find the frequency response of the system H(e^jw). Determine the...
y[n] =b(ax[n] +x[n-1]+ax[n-2]) where a&b >0. Find the frequency response of the system H(e^jw). Determine the values of a & b, if the magnitude response of the filter at w = 0 is 1 and at w =pi÷2 is 0.5. thanks
For the system given by the difference equation below: Y(n) – (3/2).Y(n-1) – Y(n-2) = -(5/2)....
For the system given by the difference equation below: Y(n) – (3/2).Y(n-1) – Y(n-2) = -(5/2). X(n-1) Find the transfer function H(z). You will need to do this manually. Find the poles and zeros of H(z). You can do this manually or use MATLAB. Plot the poles and zeros in MATLAB Is the system stable? Plot the impulse response of the system using MATLAB Plot the Step Response of the system using MATLAB Plot the frequency response of the system...
Using the following code: % Ex 6.4 First-order step and impulse response for two time constants...
Using the following code: % Ex 6.4 First-order step and impulse response for two time constants % clear all; close all; t = 0:.1:100; % Time vector subplot(1,2,1); x = 250*exp(-0.05*t); plot(t,x,'k'); xlabel('Time (hrs)','FontSize',14); ylabel('P_A (mmHg)','FontSize',14); title('Impulse Response','FontSize',14); subplot(1,2,2); x = 20*(1-exp(-0.05*t)); plot(t,x,'k'); xlabel('Time (hrs)','FontSize',14); ylabel('P_A (mmHg)','FontSize',14); title('Step Response','FontSize',14);    ANSWER: The response of a 1st order linear body fluid balance system to step function (L m (t) = 1/s, Eqn. 6.9/p226) and impulse function (L d (t) = 1,...
1. Write a MATLAB function to determine the discrete-time Fourier Transform (H(?)) of the following sequence....
1. Write a MATLAB function to determine the discrete-time Fourier Transform (H(?)) of the following sequence. Plot its magnitude and phase. You can use the dtft command and use the abs, angle and plot commands to plot the results. x(n) = {4, 3, 2, 1, 2, 3, 4}. 2. Analytically determine H(z) and plot its magnitude and phase for the following system using freqz. y(n) = 2x(n) + x(n ? 1) ? 0.25y(n ? 1) + 0.25y(n ? 2). 3....
1) Use the First Derivative Test to find the local maximum and minimum values of the...
1) Use the First Derivative Test to find the local maximum and minimum values of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.): g(u) = 0.3u3 + 1.8u2 + 146 a) local minimum values:    b) local maximum values:    2) Consider the following: f(x) = x4 − 32x2 + 6 (a) Find the intervals on which f is increasing or decreasing. (Enter your answers using interval notation.) increasing:    decreasing:...
So, i have this code in python that i'm running. The input file is named input2.txt...
So, i have this code in python that i'm running. The input file is named input2.txt and looks like 1.8 4.5 1.1 2.1 9.8 7.6 11.32 3.2 0.5 6.5 The output2.txt is what i'm trying to achieve but when the code runs is comes up blank The output doc is created and the code doesn't error out. it should look like this Sample Program Output 70 - 510, [semester] [year] NAME: [put your name here] PROGRAMMING ASSIGN MENT #2 Enter...
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact)...
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact) solution y(t). (a) Verify that the solution of the initial value problem is y(t) = 1/(3e^(-t) − t + 1) and evaluate y(1) to at least four decimal places. (b) Use Euler’s method to approximate y(1), using a step size of h = 0.5, and evaluate the difference between y(1) and the Euler’s method approximation. (c) Use MATLAB to implement Euler’s method with each...
The mean waiting time at the​ drive-through of a​ fast-food restaurant from the time an order...
The mean waiting time at the​ drive-through of a​ fast-food restaurant from the time an order is placed to the time the order is received is 85.5 85.5 seconds. A manager devises a new​ drive-through system that she she believes will decrease wait time. As a​ test, she she initiates the new system at her her restaurant and measures the wait time for 10 10 randomly selected orders. The wait times are provided in the table to the right. Complete...