Question

Q No 1: Here R=18 A continuous time signal x(t) is defined as x(t) = {...

Q No 1: Here R=18

A continuous time signal x(t) is defined as

x(t) = {

              -2R,           -0.65 < t < 0

                    R,               0 < t < 1

              0.5R,                1 < t < 1.25

                   0,                 otherwise

Then sketch and label following signals

(i) x(-t) [u(t+1.25)-u(t-0.75)] (ii) Ev{x(t)} (iii) Od{x(t)} (iv) x(2.5t) (v) x(0.25t)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A continuous-time system with impulse response h(t)=8(u(t-1)-u(t-9)) is excited by the signal x(t)=3(u(t-3)-u(t-7)) and the system...
A continuous-time system with impulse response h(t)=8(u(t-1)-u(t-9)) is excited by the signal x(t)=3(u(t-3)-u(t-7)) and the system response is y(t). Find the value of y(10).
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x)...
Prove that the function f : R \ {−1} → R defined by f(x) = (1−x) /(1+x) is uniformly continuous on (0, ∞) but not uniformly continuous on (−1, 1).
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system...
Suppose u(t,x) and v(t,x ) is C^2 functions defined on R^2 that satisfy the first-order system of PDE Ut=Vx, Vt=Ux, A.) Show that both U and V are classical solutions to the wave equations  Utt= Uxx. Which result from multivariable calculus do you need to justify the conclusion. B)Given a classical sol. u(t,x) to the wave equation, can you construct a function v(t,x) such that u(t,x), v(t,x) form of sol. to the first order system.
i) show that the function f: Q->Q defined by f(x)=1/((x^2)-2) is continuous at all x in...
i) show that the function f: Q->Q defined by f(x)=1/((x^2)-2) is continuous at all x in Q,but that it is unbounded on [0,2]Q. Compare to the extremal value Theorem.
Let f : R → R be defined by f(x) = x^3 + 3x, for all...
Let f : R → R be defined by f(x) = x^3 + 3x, for all x. (i) Prove that if y > 0, then there is a solution x to the equation f(x) = y, for some x > 0. Conclude that f(R) = R. (ii) Prove that the function f : R → R is strictly monotone. (iii) By (i)–(ii), denote the inverse function (f ^−1)' : R → R. Explain why the derivative of the inverse function,...
Given signal x(t) = sinc(t): 1. Find out the Fourier transform of x(t), find X(f), sketch...
Given signal x(t) = sinc(t): 1. Find out the Fourier transform of x(t), find X(f), sketch them. 2. Find out the Nyquist sampling frequency of x(t). 3. Given sampling rate fs, write down the expression of the Fourier transform of xs(t), Xs(f) in terms of X(f). 4. Let sampling frequency fs = 1Hz. Sketch the sampled signal xs(t) = x(kTs) and the Fourier transform of xs(t), Xs(f). 5. Let sampling frequency fs = 2Hz. Repeat 4. 6. Let sampling frequency...
Consider the function f : R 2 → R defined by f(x, y) = 4 +...
Consider the function f : R 2 → R defined by f(x, y) = 4 + x 3 + y 3 − 3xy. (a)Compute the directional derivative of f at the point (a, b) = ( 1 2 , 1 2 ), in the direction u = ( √ 1 2 , − √ 1 2 ). At the point ( 1 2 , 1 2 ), is u the direction of steepest ascent, steepest descent, or neither? Justify your...
How many distinct invariant subspaces does the linear operator T: R^3 --> R^3 defined by T(x,y,z)...
How many distinct invariant subspaces does the linear operator T: R^3 --> R^3 defined by T(x,y,z) = (4z-y, x+2z, 3z) have? 0 1 2 3 4
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
Prove: Let x,y be in R such that x < y. There exists a z in...
Prove: Let x,y be in R such that x < y. There exists a z in R such that x < z < y. Given: Axiom 8.1. For all x,y,z in R: (i) x + y = y + x (ii) (x + y) + z = x + (y + z) (iii) x*(y + z) = x*y + x*z (iv) x*y = y*x (v) (x*y)*z = x*(y*z) Axiom 8.2. There exists a real number 0 such that for all...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT