Question

You have two air columns that are each 1.870 m long. One column is open at...

You have two air columns that are each 1.870 m long. One column is open at both ends and the other is closed at one end. You wish to determine the frequencies you can produce in the audible range (20 Hz–20,000 Hz) on a day when the temperature of the air is at 6.000°C. (Give your answers to at least four significant figures. Assume that the speed of sound at 0° C is exactly 331 m/s.)

(a) in the column that is open at both ends

lowest frequency     Hz
second lowest frequency     Hz
highest frequency     Hz


(b) in the column that is closed at one end

lowest frequency     Hz
second lowest frequency     Hz
highest frequency     Hz

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You have two air columns that are each 2.470 m long. One column is open at...
You have two air columns that are each 2.470 m long. One column is open at both ends and the other is closed at one end. You wish to determine the frequencies you can produce in the audible range (20 Hz–20,000 Hz) on a day when the temperature of the air is at 24.00°C. (Give your answers to at least four significant figures. Assume that the speed of sound at 0° C is exactly 331 m/s.) (a) in the column...
What frequencies (in Hz) will a 1.55 m long tube produce in the audible range (20...
What frequencies (in Hz) will a 1.55 m long tube produce in the audible range (20 Hz - 20,000 Hz) at 22.0°C for the following cases? (a) the tube is closed at one end lowest frequency _______Hz second lowest frequency ______Hz highest frequency (rounded to the nearest Hz)_______Hz (b) the tube is open at both ends lowest frequency______Hz second lowest frequency ______Hz highest frequency (rounded to the nearest Hz)______Hz
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s....
1.An organ pipe is 151 cm long. The speed of sound in air is 343 m/s. a. What are the fundamental and first three audible overtones if the pipe is closed at one end? Express your answers using three significant figures separated by commas. b. What are the fundamental and first three audible overtones if the pipe is open at both ends? Express your answers using three significant figures separated by commas. 2.A particular organ pipe can resonate at 252...
What frequencies (in Hz) will a 1.95 m long tube produce in the audible range (20...
What frequencies (in Hz) will a 1.95 m long tube produce in the audible range (20 Hz - 20,000 Hz) at 15.0°C for the following cases? (a) the tube is closed at one end lowest frequency Hzsecond lowest frequency Hzhighest frequency (rounded to the nearest Hz) Hz (b) the tube is open at both ends lowest frequency Hzsecond lowest frequency Hzhighest frequency (rounded to the nearest Hz) Hz
What frequencies (in Hz) will a 1.55 m long tube produce in the audible range (20...
What frequencies (in Hz) will a 1.55 m long tube produce in the audible range (20 Hz - 20,000 Hz) at 21.0°C for the following cases? the tube is closed at one end lowest frequency Hzsecond lowest frequency Hzhighest frequency (rounded to the nearest Hz) Hz (b) the tube is open at both ends lowest frequency Hzsecond lowest frequency Hzhighest frequency (rounded to the nearest Hz) Hz
The overall length of a piccolo is 33.0 cm. The resonating air column is open at...
The overall length of a piccolo is 33.0 cm. The resonating air column is open at both ends. (a) Find the frequency (in Hz) of the lowest note a piccolo can sound. (Assume that the speed of sound in air is 343 m/s.) (b) Opening holes in the side of a piccolo effectively shortens the length of the resonant column. Assume the highest note a piccolo can sound is 5 000 Hz. Find the distance (in mm) between adjacent antinodes...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if...
A pipe is 2.37 m long. (a) Determine the frequencies of the first three harmonics if the pipe is open at both ends. Take 344 m/s as the speed of sound in air. f1 = 72.6 Correct: Your answer is correct. Hz f2 = 145.2 Correct: Your answer is correct. Hz f3 = 217.8 Correct: Your answer is correct. Hz (b) How many harmonic frequencies of this pipe lie in the audible range, from 20 Hz to 20000 Hz? 275...
The overall length of a piccolo is 30.0 cm. The resonating air column vibrates as in...
The overall length of a piccolo is 30.0 cm. The resonating air column vibrates as in a pipe open at both ends. (a) Find the frequency of the lowest note that a piccolo can play, assuming that the speed of sound in air is 340 m/s. Hz (b) Opening holes in the side effectively shortens the length of the resonant column. If the highest note a piccolo can sound is 5000 Hz, find the distance between adjacent antinodes for this...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.20 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...
Pipe A, which is 1.50 m long and open at both ends, oscillates at its third...
Pipe A, which is 1.50 m long and open at both ends, oscillates at its third lowest harmonic frequency. It is filled with air for which the speed of sound is 343 m/s. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with x = 0 at the closed end. (a) How many nodes...