Question

Use JK Flip Flop to design a 2-bit synchronous counter (up counter) that counts down as...

Use JK Flip Flop to design a 2-bit synchronous counter (up counter) that counts down as given: AB = 01, 11, 00, 10, and then again 01. Show the design steps (e.g state table, j and k inputs for k-maps etc) and draw the final circuit.

Homework Answers

Answer #1

In case you have any doubts or you did not understand any step please feel free to ask your doubts in the comments section. I would be happy to clarify it.

DO GIVE A THUMBS UP !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Design a 2-bit binary counter using one JK and one T flip flop. Derive the equations...
Design a 2-bit binary counter using one JK and one T flip flop. Derive the equations for JA, KA and TB. Do not draw the circuit.
can someone do 3 bit counter USING a SR, JK, and D flip flop. With a...
can someone do 3 bit counter USING a SR, JK, and D flip flop. With a pattern of 7,6,5,4,3,2,1. showing the steps w tables(present, next, etc)
Design a synchronous up/down 2-bit counter. The circuit has a single input (X), when X=1, the...
Design a synchronous up/down 2-bit counter. The circuit has a single input (X), when X=1, the counter counts up (i.e. 0,1,2,3,0,1.....), when X=0, the counter counts down (i.e. 3,2,1,0,3,2,....). Show work, including a next-state table and circuit diagram.
Design 2 bits counter that count down by using T flip flop when input x =1...
Design 2 bits counter that count down by using T flip flop when input x =1 and counts up when x=0. Find the following 1. Derive the state table 2. Derive the K‐map simplifications. 3. Draw the logic diagram
1.a) A counter is designed to go through the sequence : 1,3,5,7,0,2,5,6, repeat, Using JK flipflops:...
1.a) A counter is designed to go through the sequence : 1,3,5,7,0,2,5,6, repeat, Using JK flipflops: (i) Construct the state table. (ii) Draw the circuit. b) A sequential circuit is constructed with one T flip-flop A, one D flip-flop B and one input X, when X=0, the state of the circuit remains the same. When X=1, the circuit goes through the transitions from 00 to 01 to 11 to 10 back to 00, repeat. (i) Draw the state transition diagram...
Design a counter which counts in the sequence that has been assigned to you. Use D...
Design a counter which counts in the sequence that has been assigned to you. Use D flip flops and NAND gates. Simulate your design using SimUaid. Submit the state table, D flip-flop input equations, and transition graph determined in Part 6. The D flip-flop equations can be derived using Karnaugh maps or using LogicAid by entering a state table with zero input variables. Sequence: 000,100,001,110,101,111,(repeat) 000,... Also, please answer the following questions: How can a D flip-flop be set to...
Ripple Counters and T-FFs. (a) Design a 5-bit ripple down-counter using T Flip-Flops and no other...
Ripple Counters and T-FFs. (a) Design a 5-bit ripple down-counter using T Flip-Flops and no other components. (b) Design a 5-bit ripple up-counter using T Flip-Flops and no other components. (c) What limits the maximum counting speed of your ripple counters? (d) Design a T Flip-Flop using only a D flip-flop with no extra logic gates.
Design a synchronous machine (Transition Table, K-maps, Final Equations, Circuit Diagram) that counts through the following...
Design a synchronous machine (Transition Table, K-maps, Final Equations, Circuit Diagram) that counts through the following sequence in the order shown below. Note, there are no inputs or output variables, so your Q values must reflect the Hex value listed. A 4 1 2 6 3 9 C 7 and repeat a) using D flip-flops and combinational logic b) using a PROM device (must show Hex values in order) and 4-bit D-Register
Design a circuit for a synchronous 4-bit counter. Your counter should count up starting from 0...
Design a circuit for a synchronous 4-bit counter. Your counter should count up starting from 0 to 9 (00002 to 10012) and then wind back to 0 (00002) – after 9, it should go back to 0. Use 4 JK flip-flops and any other gates you need. Include your design documentation in your submission: a. Truth table b. Simplification (show your work) 2. Build this circuit in Logisim. Please label each gate, including flip-flops. You may need the following wiring...
Design 3 - Bit sequential counter with D Flip-Flops. Provide the below: 1. State Diagram: 2....
Design 3 - Bit sequential counter with D Flip-Flops. Provide the below: 1. State Diagram: 2. State Table: 3. K-maps and equations: 4. Logic Diagram: