Question

Design a high-pass filter, maximally flat lumped-element filter having a cutoff at 4 GHz, and an...

Design a high-pass filter, maximally flat lumped-element filter having a cutoff at 4 GHz, and an attenuation of at least 20 dB at 3.5 GHz. The characteristic impedance is 50 Ω.

(ii) Simulate your design in ADS to plot the insertion loss versus frequency.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Design a Butterworth high pass filter which is 4th order. The first element of the low...
Design a Butterworth high pass filter which is 4th order. The first element of the low pass prototype shall be a capacitor C1 . The 3 dB cutoff shall be 500 KHz. RL100 , Rs=50
Design an active high pass filter with a high frequency gain of 5 and a cutoff...
Design an active high pass filter with a high frequency gain of 5 and a cutoff frequency of 2kHz. Use a 0.1 uF capacitor in your design.
PLEASE ANSWER QUESTION #2 Design an FIR band-pass filter with cutoff frequencies of π/ 4 and...
PLEASE ANSWER QUESTION #2 Design an FIR band-pass filter with cutoff frequencies of π/ 4 and π/ 6 . The filter’s impulse response should have 81 samples (i.e. N = 81). Use a Blackman filter window. (a) Plot the filter’s impulse response (b) Plot the magnitude of the filter’s frequency response, in dB. (i.e. 20 log(|H(e jω)|)) (c) Print out the MATLAB code used in the filter design 2. Use the filter designed in #1 to filter a random input...
Design a passive RC high pass filter with a cutoff frequency of 470 Hz using a...
Design a passive RC high pass filter with a cutoff frequency of 470 Hz using a 270 pF capacitor. What is the value of the resistor? Express your answer with the appropriate units. What is the transfer function of the filter? Express your answer in terms of the variables R, C, and s. If the filter is loaded with a resistor whose value is the same as the resistor in part B, what is the transfer function of this loaded...
Using 5 nF capacitors and ideal op amps, design a high-pass unitygain Butterworth filter with a...
Using 5 nF capacitors and ideal op amps, design a high-pass unitygain Butterworth filter with a cutoff frequency of 4 kHz and a gain of at least -32 dB at 800 Hz. 30 points a) Draw a circuit diagram of the filter and label all the component values.
Design a second-order Butterworth high-pass filter with an infinite frequency gain of 0 dB and a...
Design a second-order Butterworth high-pass filter with an infinite frequency gain of 0 dB and a -3 dB frequency of 5.24 kHz. (include circuit design w/ component values)
Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz,...
Design an active-RC low pass second order Butterworth filter for a cutoff frequency of 1 kHz, and a pass band gain of 2 V/V. Use a 741 Op Amp. If using Table I, use a capacitor value of 0.1 μF for C and C1, otherwise you may use any capacitors available in the lab. If applicable, make an excel worksheet showing the calculations required for the above design.  Choose appropriate real resistor values for the designed circuit and simulate this circuit...
Question : Design the low and high pass filter for the signal, x(t) = 10 sin...
Question : Design the low and high pass filter for the signal, x(t) = 10 sin (10 t) + 1 sin (1000 t) by MATLAB Is below answer right? at ?High pass , 5row shouldn't this change from sin(100*t) ? sin(1000*t) x = 10*sin(10*t) + 1*sin(100*t); ?   x = 10*sin(10*t) + 1*sin(1000*t); ??? ..................................................................................................................................................... ?Low pass clc; rng default Fs=2000; t=linspace(0,1,Fs); x=10*sin(10*t)+sin(1000*t)%given signal n=0.5*randn(size(t));%noise x1=x+n; fc=150; Wn=(2/Fs)*fc; b=fir1(20,Wn,'low',kaiser(21,3)); %fvtool(b,1,’Fs’,Fs) y=filter(b,1,x1); plot(t,x1,t,y) xlim([0 0.1]) xlabel('Time (s) ') ylabel('Amplitude') legend('Original Signal','Filtered Data')...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT