Question

documentclass{article} \usepackage{array} \usepackage{tabulary} \usepackage{amsmath} \begin{document} C=capacitance of equivalent ckt.[7] \begin{equation} C=\dfrac{\epsilon_{ef}\epsilon_{o}L_{e}W}{2 h} F \end{equation} where\ \begin{center}...

documentclass{article}
\usepackage{array}
\usepackage{tabulary}
\usepackage{amsmath}
\begin{document}
 
C=capacitance of equivalent ckt.[7]
\begin{equation} 
C=\dfrac{\epsilon_{ef}\epsilon_{o}L_{e}W}{2     h} F
\end{equation}
where\
\begin{center}
$F=\cos ^{ - 2} ({\pi}X_{f}/L)$
\end{center}
 
L=inductance of equivalent ckt.[7]
 
 \begin{equation} 
L=\frac{1}{({2\pi}f_{r})^{2}C}
\end{equation}\
 
$\Delta L$=additional series inductance
\begin{equation} 
\Delta L=\frac{Z_{01}+Z_{02}}{16\pi{f_{r}}F} tan(\pi{f_{r}{L_{n}}}/C)
\end{equation}\
 
 
$Z_{01} and Z_{02}$ are the characteristics impedances of microstrip lines with width of 
$w_{1} and w_{2}$ respectively.The values
 
\begin{equation}
Z_{01}=120\pi/(\frac{w_{1}}{h}+1.393+0.667\ln(\frac{w_{1}}{h}+1.444))
\end{equation}\
 
 
 
$$ 
Z_{02}=120\pi/(\frac{w_{2}}{h}+1.393+0.667\ln(\frac{w_{2}}{h}+1.444))
$$
\
where\
$$w_{1}=w-2{P_{s}}-W_{s}$$
\
and\
$$w_{2}=2{P_{s}}-W_{s}$$
 
The capacitance$\Delta C$ between center wing and side wing is calculated as gap capacitance.
\begin{equation} 
\Delta C=2L_{n}\dfrac{\epsilon_{0}}{\pi}
\left[\ln\left(2\frac{1+\sqrt{k^{'}}}{1-\sqrt{k^{'}}}\right)+\ln\coth\left(\frac{{\pi}S}{4h}\right)+0.013C_{f}\dfrac{h}{s}\right]F
\end{equation}\
 
where\
$$K^{'}=\sqrt{1-K^{2}}$$
 
\
$$K^{2}=\frac{1+\frac{W_{1}}{S}+\frac{W_{2}}{S}}{\left(1+\frac{W_{1}}{S}\right)\left(1+\frac{W_{2}}{S}\right)}$$
 
The resonance resistance of the two resonators are given by [11]
\begin{equation}
R_{1,2}=\frac{1}{2(G_{1}+G_{12})}\cos^{2}(\frac{\pi{X_{f}}}{l})
\end{equation}
 
 
\
$$G_{1}=\frac{1}{{120}\pi^{2}}\int_{0}^{\pi}\left[\frac{\sin\left(kw\cos\frac{\theta}{2}\right)}{\cos{\theta}}\right](\sin{\theta})^{3}d{\theta}$$
\
 
$$G_{12}=\frac{1}{{120}\pi^{2}}\int_{0}^{\pi}\left[\frac{\sin\left(kw\cos\frac{\theta}{2}\right)}{\cos{\theta}}\right]J_{0}(kl\sin{\theta})(\sin{\theta})^{3}d{\theta}$$
 
\
where $k$ is the wave numbers at center wing resonance frequency $f_{r}$ and side wings resonance frequency $f_{r}^{'}$ , which are given by
$$fr=\frac{1}{\sqrt{LC}}$$
 
 
$${f}r^{'}=\frac{1}{\sqrt{L^{'}C^{'}}}$$
\
 
where\
 $L^{'}=L+\Delta L$ and $C^{'}={C{\Delta C}}/{(C+\Delta C)} $\\
 
 
Coupling factor $C_{P}$ between two resonator is given as
\
 
\begin{equation}
C_{P}={1}/{\sqrt{Q_{T}Q^{'}_{T}}}
\end{equation}
 
Coupling capacitance $C_{c}$ is defined as\
 
\begin{equation}
C_{c}= -(C+C^{'})+\sqrt{\left(\left(C+C^{'}\right)^{2}-4CC^{'}\left(1-\frac{1}{C^{2}_{P}}\right)\right)}
\end{equation}
 
Input impedance of ESPA
\begin{equation}
Z_{in}=jwL_{P}+\frac{Z_{1}Z_{2}}{(Z_{1}+Z_{2})}
\end{equation}
 
where $Z_{1}$ and $Z_{2}$ are\
 
$$Z_{1}=\frac{JwLR_{1}}{R_{1}-w^{2}LCR_{1}+JwL}     +\frac{1}{jwC_{c}}          $$
 
and\
 
$$Z_{2}=\frac{JwL^{'}R_{2}}{R_{2}-w^{2}L^{'}C^{'}R_{2}+JwL^{'}}$$
 
\
$$L_{P}=\frac{60{h}}{C}\ln(C/{0.2886\pi{f_{r}}})$$
 
reflection coefficient\
$$\Gamma=\dfrac{Z_{in}-50}{Z_{in}+50}$$
 
Return loss
\begin{equation}
return loss=20\log_{10}
\mid{\Gamma\mid}
\end{equation}

find the output

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions