Question

documentclass{article} \usepackage{array} \usepackage{tabulary} \usepackage{amsmath} \begin{document} C=capacitance of equivalent ckt.[7] \begin{equation} C=\dfrac{\epsilon_{ef}\epsilon_{o}L_{e}W}{2 h} F \end{equation} where\ \begin{center}...

documentclass{article}
\usepackage{array}
\usepackage{tabulary}
\usepackage{amsmath}
\begin{document}
 
C=capacitance of equivalent ckt.[7]
\begin{equation} 
C=\dfrac{\epsilon_{ef}\epsilon_{o}L_{e}W}{2     h} F
\end{equation}
where\
\begin{center}
$F=\cos ^{ - 2} ({\pi}X_{f}/L)$
\end{center}
 
L=inductance of equivalent ckt.[7]
 
 \begin{equation} 
L=\frac{1}{({2\pi}f_{r})^{2}C}
\end{equation}\
 
$\Delta L$=additional series inductance
\begin{equation} 
\Delta L=\frac{Z_{01}+Z_{02}}{16\pi{f_{r}}F} tan(\pi{f_{r}{L_{n}}}/C)
\end{equation}\
 
 
$Z_{01} and Z_{02}$ are the characteristics impedances of microstrip lines with width of 
$w_{1} and w_{2}$ respectively.The values
 
\begin{equation}
Z_{01}=120\pi/(\frac{w_{1}}{h}+1.393+0.667\ln(\frac{w_{1}}{h}+1.444))
\end{equation}\
 
 
 
$$ 
Z_{02}=120\pi/(\frac{w_{2}}{h}+1.393+0.667\ln(\frac{w_{2}}{h}+1.444))
$$
\
where\
$$w_{1}=w-2{P_{s}}-W_{s}$$
\
and\
$$w_{2}=2{P_{s}}-W_{s}$$
 
The capacitance$\Delta C$ between center wing and side wing is calculated as gap capacitance.
\begin{equation} 
\Delta C=2L_{n}\dfrac{\epsilon_{0}}{\pi}
\left[\ln\left(2\frac{1+\sqrt{k^{'}}}{1-\sqrt{k^{'}}}\right)+\ln\coth\left(\frac{{\pi}S}{4h}\right)+0.013C_{f}\dfrac{h}{s}\right]F
\end{equation}\
 
where\
$$K^{'}=\sqrt{1-K^{2}}$$
 
\
$$K^{2}=\frac{1+\frac{W_{1}}{S}+\frac{W_{2}}{S}}{\left(1+\frac{W_{1}}{S}\right)\left(1+\frac{W_{2}}{S}\right)}$$
 
The resonance resistance of the two resonators are given by [11]
\begin{equation}
R_{1,2}=\frac{1}{2(G_{1}+G_{12})}\cos^{2}(\frac{\pi{X_{f}}}{l})
\end{equation}
 
 
\
$$G_{1}=\frac{1}{{120}\pi^{2}}\int_{0}^{\pi}\left[\frac{\sin\left(kw\cos\frac{\theta}{2}\right)}{\cos{\theta}}\right](\sin{\theta})^{3}d{\theta}$$
\
 
$$G_{12}=\frac{1}{{120}\pi^{2}}\int_{0}^{\pi}\left[\frac{\sin\left(kw\cos\frac{\theta}{2}\right)}{\cos{\theta}}\right]J_{0}(kl\sin{\theta})(\sin{\theta})^{3}d{\theta}$$
 
\
where $k$ is the wave numbers at center wing resonance frequency $f_{r}$ and side wings resonance frequency $f_{r}^{'}$ , which are given by
$$fr=\frac{1}{\sqrt{LC}}$$
 
 
$${f}r^{'}=\frac{1}{\sqrt{L^{'}C^{'}}}$$
\
 
where\
 $L^{'}=L+\Delta L$ and $C^{'}={C{\Delta C}}/{(C+\Delta C)} $\\
 
 
Coupling factor $C_{P}$ between two resonator is given as
\
 
\begin{equation}
C_{P}={1}/{\sqrt{Q_{T}Q^{'}_{T}}}
\end{equation}
 
Coupling capacitance $C_{c}$ is defined as\
 
\begin{equation}
C_{c}= -(C+C^{'})+\sqrt{\left(\left(C+C^{'}\right)^{2}-4CC^{'}\left(1-\frac{1}{C^{2}_{P}}\right)\right)}
\end{equation}
 
Input impedance of ESPA
\begin{equation}
Z_{in}=jwL_{P}+\frac{Z_{1}Z_{2}}{(Z_{1}+Z_{2})}
\end{equation}
 
where $Z_{1}$ and $Z_{2}$ are\
 
$$Z_{1}=\frac{JwLR_{1}}{R_{1}-w^{2}LCR_{1}+JwL}     +\frac{1}{jwC_{c}}          $$
 
and\
 
$$Z_{2}=\frac{JwL^{'}R_{2}}{R_{2}-w^{2}L^{'}C^{'}R_{2}+JwL^{'}}$$
 
\
$$L_{P}=\frac{60{h}}{C}\ln(C/{0.2886\pi{f_{r}}})$$
 
reflection coefficient\
$$\Gamma=\dfrac{Z_{in}-50}{Z_{in}+50}$$
 
Return loss
\begin{equation}
return loss=20\log_{10}
\mid{\Gamma\mid}
\end{equation}

find the output

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT