Question

Uniform area, heat transfer problem A stove's walls are made up of a flat inner insulating...

Uniform area, heat transfer problem A stove's walls are made up of a flat inner insulating board 0.01m thick (thermal conductivity: 0.2 W m-1K-1) and a flat outer steel sheet 0.01m thick (thermal conductivity: 26 W m-1K-1). A mineral-wool (thermal conductivity: 0.065 W m-1K-1) is placed between these sheets. The inside temperature of the wall is 773K, how thick does the insulation have to be to maintain the outside wall temperature at 323K ? Assume that the ambient air temperature is 293K and the outside convective heat transfer coefficient: 5 W m-2K-1. Determine the heat transfer current and calculate the required length of thw mineral-wool insulation.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The walls of an oven are made from steel sheets with insulating board between them of...
The walls of an oven are made from steel sheets with insulating board between them of thermal conductivity 0.18 J m-1 s-1 °C-1. If the maximum internal temperature in the oven is 300°C and the outside surface of the oven wall must not rise above 50°C, estimate the minimum necessary thickness of insulation assuming surface heat transfer coefficients to the air on both sides of the wall are 15 J m-2 s-1 °C-1. Assume the room air temperature outside the...
In a warehouse, a cold room that is maintained at 10oC has a wall made of...
In a warehouse, a cold room that is maintained at 10oC has a wall made of two layers of materials. The inner layer has a thickness of 2 cm and a thermal conductivity of 0.1 W/mK. The outer layer, which is 4 cm thick, has a thermal conductivity of 0.04 W/mK. The temperature of the outside ambient is 30oC . The convective heat transfer coefficients on the outside and the inside of the wall are 40 W/m2K and 20 W/m2K...
A flat wall is exposed to an environmental temperature of 38 degrees C. The wall is...
A flat wall is exposed to an environmental temperature of 38 degrees C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.8 W/(m.K), and the temperature of the wall on the inside of the insulation is 320 degrees C. The wall loses heat to the environment by convection. Compute the value of the convection heat transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the...
Overall heat transfer co-efficient A pipe carrying milk at 4 °C without insulation will gain heat...
Overall heat transfer co-efficient A pipe carrying milk at 4 °C without insulation will gain heat from outside environment (with air temperature of 20 °C) before it reaches the cold storage containers from heat exchanger. If the pipe carrying the milk has thermal conductivity of 40 W/(m °C) with inside diameter of 5 cm and outside diameter of 7.5 cm, what is the maximum length of the pipe to limit rate of heat transfer to 1kW. Consider the convective heat...
(a) Calculate the rate of heat conduction (in W) through house walls that are 15.0 cm...
(a) Calculate the rate of heat conduction (in W) through house walls that are 15.0 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 115 m2 and their inside surface is at 19.0°C, while their outside surface is at 5.00°C. W (b) How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your...
Calculate the rate of heat conduction (in W) through house walls that are 14.5 cm thick...
Calculate the rate of heat conduction (in W) through house walls that are 14.5 cm thick and that have an average thermal conductivity twice that of glass wool. Assume there are no windows or doors. The surface area of the walls is 145 m2 and their inside surface is at 21.5°C, while their outside surface is at 5.00°C. How many 1 kW room heaters would be needed to balance the heat transfer due to conduction? (Round your answer to the...
1. [20] A small building that shelters a water supply pump measures 2 m ×3 m...
1. [20] A small building that shelters a water supply pump measures 2 m ×3 m ×2.4 m high. It is constructed of 1-cm thick wood having a thermal conductivity of 0.126 W∙m-1 ∙K -1 . The inside walls are to be maintained at 10 oC when the outside temperature is -18 oC. How much heat must be supplied to maintain the desired temperature? How much heat must be supplied if the walls are lined with 10 cm of glass-wool...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside...
A pipe is transporting saturated steam at 1 bar (100°C) . The pipe has an inside diameter of 100 mm with a 9 mm thick wall. The pipe is mild steel with a thermal conductivity of 80 W m-1 K-1. Covering the pipe is a 20 mm thick layer of polythene insulation with a thermal conductivity of 0.04 W m-1 K-1. The convective heat transfer coefficient of the steam is 513.4 W m-2 K-1. The convective heat transfer coefficient of...
You want to limit the heat flux density (heat intensity) by a wall to 10 W...
You want to limit the heat flux density (heat intensity) by a wall to 10 W / (m2). The outside temperature is 4 ° C and the internal temperature 37 ◦C. How thick should a steel wall (λ = 17, 3 W / (m · K)) be to meet requirements? How thick must a mineral wool disk (λ = 0, 038 W / (m · K) be) to give the same greatest heat intensity? Disregard the heat transfer rates between...
A 2.5 cm inside diameter pipe is being used to convey a liquid food at 80ºC....
A 2.5 cm inside diameter pipe is being used to convey a liquid food at 80ºC. The inside convective heat transfer coefficient is 10W/(m2ºC). The pipe (0.5 cm thick) is made of steel (thermal conductivity = 43W/mºC). The outside ambient temperature is 20ºC. The outside convective heat-transfer coefficient is 100 /(m2ºC). Calculate the overall heat transfer coefficient and the heat loss from 1 m length of the pipe.