Question

Consider an LTI system whose frequency response is undesirable; the distorting system function is given as:...

Consider an LTI system whose frequency response is undesirable; the distorting system function is given as:

Hdz=(1-0.8ej0.4πz-1)(1-0.8e-j0.4πz-1)(1-1.5ej0.6πz-1)(1-1.5e-j0.6πz-1)

Assume the distorting function is both causal and stable. Design and examine compensation system Hc(z) such that when a signal sn is transmitted through this communication channel then perfect compensation is achieved i.e. scn=sn.

b)   Determine the impulse response h[n] by using the inverse Z transform.

Hz=log1+az-1+2Z-5,             z>a

c) For what value of a will be the impulse response both stable and causal? Explain your answer.

Homework Answers

Answer #1

IF YOU HAVE ANY QUERY COMMENT DOWN BELOW I WILL SURELY HELP YOU AS SOON AS POSSIBLE.

PLEASE UPVOTE MY ANSWER THANKS IN ADVANCE..!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the LTI system described by the following system functions, determine (i) the impulse response (ii)...
For the LTI system described by the following system functions, determine (i) the impulse response (ii) the difference equation representation (iii) the pole-zero plot, and (iv) the steady state output y(n) if the input is x[n] = 3cos(πn/3)u[n]. a. H(z) = (z+1)/(z-0.5), causal system (Hint: you need to express H(z) in z-1 to find the difference equation ) b. H(z) = (1 + z-1+ z-2)/(1-1.7z-1+0.6z-2), stable system c. Is the system given in (a) stable? Is the system given in...
a) If the transfer function of a system is H(z) = 2+z^(-2), what is its impulse...
a) If the transfer function of a system is H(z) = 2+z^(-2), what is its impulse response? b) If the transfer function of a system is 2z/(z-0.5) and it is valid for when |z| > 0.5, what is its impulse response? c) If the transfer function of a system is 1/(z-2), what is its impulse response? d) x[n] = (-4)^n U[n]. (U[n] is the unit step function). What is its z-transform and the region of convergence of its z-transform? e)...
The signal x[n] is the input of an LTI system with impulse function of h[n]. x[n]...
The signal x[n] is the input of an LTI system with impulse function of h[n]. x[n] = (0.4)^n u[n] and h[n] = (0.2)^n u[n]. (a) What is the DTFT of the output of the LTI system? (b) What are the Energy density spectrums of the input and output signals? (c) What would be the inverse DTFT: X(w) = 1/(1-0.25e^-j(w-2)) (d) How would part (c) differ for the DTFT: X(w) = 1/(1-0.25e^-j(w-2)) + 1/(1-0.25e^-j(w+2))
if the transfer function H(z) of a stable LTI system has two zeros at z =1+j...
if the transfer function H(z) of a stable LTI system has two zeros at z =1+j and z = 1-j and two poles at z = 0 and z = -0.5. Write the expression of H(z), if the frequency response of the system at omega (w) where w = 0 is 1. can I have help here ?
For an LTI system h[n], the output is given by y[n] = 2δ[n-1], given that x[n]...
For an LTI system h[n], the output is given by y[n] = 2δ[n-1], given that x[n] = δ[n]-2δ[n-1]+ 2δ[n-2]. a) Find the transfer function H(z) (7 Points). b) Find the difference equation of the overall system (8 Points). c) Given that the system is causal find h[n] (10 Points). d) Given that the system does not have Fourier Transform, find h[n] (10 Points).
Consider a causal LTI system described by the difference equation: y[n] = 0.5 y[n-1] + x[n]...
Consider a causal LTI system described by the difference equation: y[n] = 0.5 y[n-1] + x[n] – x[n-1] (a) Determine the system function H(z) and plot a pole-zero pattern in the complex z-plane. (b) Find the system response using partial fraction expansion when the input is x[n] = 2u[n]. Plot the result.
6. Consider a causal linear system whose (zero-state) response to an input signal, f(t) = e...
6. Consider a causal linear system whose (zero-state) response to an input signal, f(t) = e −3tu(t), is y(t) = (−e −t + 4e −2t − 3e −3t )u(t). ( a) Find the transfer function H(s) of the system. (b) Write the differential equation that describes the system. (c) Plot the pole-zero diagram of system. Is the system stable? (d) Plot the frequency response of the system, |H(w)|. (e) Whats the systems zero-state response to another input signal, f1(t) =...
(a) Show that a system with transfer function H(z) whose denominator A(z) = 1 – [2ρ...
(a) Show that a system with transfer function H(z) whose denominator A(z) = 1 – [2ρ cosθ] z-1 + ρ 2 z-2 has poles at z = ρe ±jθ (b) For what values of r is this system stable? (c) If the numerator of H(z) is B(z) = K z-1 , what is the form of its impulse response for ρ = 1? (d) If the numerator of H(z) is B(z) = K z-1 , what is the form of...
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?]...
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?] − 3(0.5) 2? ?[?] where u[n] is the unit step function. a) Find the z-domain transfer function ?(?). b) Draw pole-zero plot of the system and indicate the region of convergence. c) Is the system stable? Explain. d) Is the system causal? Explain. e) Find the unit step response ?[?] of the system, that is, the response to the unit step input. f) Provide...