Question

For the initial value problem, Use Euler’s method with a step size of h=0.25 to find...

For the initial value problem, Use Euler’s method with a step size of h=0.25 to find approximate solution at x = 1

Homework Answers

Answer #1

Answer: Since no function was provided: so we assumed function for Euler's Method for finding initial value problem.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem...
Use​ Euler's method with step size h=0.2 to approximate the solution to the initial value problem at the points x=4.2 4.4 4.6 4.8 round to two decimal y'=3/x(y^2+y), y(4)=1
Problem 6. Use Euler’s Method to approximate the particular solution of this initial value problem (IVP):...
Problem 6. Use Euler’s Method to approximate the particular solution of this initial value problem (IVP): dydx=√y+x satisfying the initial condition y(0)=1 on the interval [0,0.4] with h = 0.1. Round ?? to 4 decimal places.
1. Consider the initial value problem dy/dx =3cos(x^2) with y(0)=2. (a) Use two steps of Euler’s...
1. Consider the initial value problem dy/dx =3cos(x^2) with y(0)=2. (a) Use two steps of Euler’s method with h=0.5 to approximate the value of y(0.5), y(1) to 4 decimal places. b) Use four steps of Euler’s method with h=0.25, to approximate the value of y(0.25),y(0.75),y(1), to 4 decimal places.    (c) What is the difference between the two results of Euler’s method, to two decimal places?   
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact)...
6. Consider the initial value problem y' = ty^2 + y, y(0) = 0.25, with (exact) solution y(t). (a) Verify that the solution of the initial value problem is y(t) = 1/(3e^(-t) − t + 1) and evaluate y(1) to at least four decimal places. (b) Use Euler’s method to approximate y(1), using a step size of h = 0.5, and evaluate the difference between y(1) and the Euler’s method approximation. (c) Use MATLAB to implement Euler’s method with each...
1. Use Euler’s method with step size ∆x = 1 to approximate y(4), where y(x) is...
1. Use Euler’s method with step size ∆x = 1 to approximate y(4), where y(x) is the solution of the initial value problem: y' = x2+ xy y(0) = 1 2. The coroner arrives at a murder scene at 9:00 pm. He immediately determines that the temperature of the body is 83◦F. He waits one hour and takes the temperature of the body again; it is 81◦F. The room temperature is 68◦F. When was the murder committed? Assume the man...
Apply Euler’s method in the interval [0,1] with the step size of 0.2 to solve numerically...
Apply Euler’s method in the interval [0,1] with the step size of 0.2 to solve numerically the initial value problem: , . Report the approximation for , and all the intermediate steps. y' = x + y/2 y(0) = −8
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to...
Given the initial value problem: y'=6√(t+y),  y(0)=1 Use Euler's method with step size h = 0.1 to estimate: y(0.1) = y(0.2) =
Use Euler's Method with step size 0.12 to approximate y (0.48) for the solution of the...
Use Euler's Method with step size 0.12 to approximate y (0.48) for the solution of the initial value problem   y ′ = x + y, and y (0)= 1.2 What is y (0.48)? (Keep four decimal places.)
Approximate the value of e by looking at the initial value problem y' = y with...
Approximate the value of e by looking at the initial value problem y' = y with y(0) = 1 and approximating y(1) using Euler’s method with a step size of 0:2. Also, how do I know when you stop? Very confused on that.
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y''...
Use Euler's method to approximate y(1.2), where y(x) is the solution of the initial-value problem x2y'' − 2xy' + 2y = 0,  y(1) = 9,  y'(1) = 9, where x > 0. Use h = 0.1. Find the analytic solution of the problem, and compare the actual value of y(1.2) with y2. (Round your answers to four decimal places.) y(1.2) ≈     (Euler approximation) y(1.2) =     (exact value)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT