Question

Given the two signals x1(t)= {1, 0, 1, 2} and x2(t)= {-1,1,1} • Find x1(t)*x2(t)=x1(t) coevolved...

Given the two signals x1(t)= {1, 0, 1, 2} and x2(t)= {-1,1,1}

• Find x1(t)*x2(t)=x1(t) coevolved with x2(t) with zero padding

• The correlation coefficient, ρ12(j=2) for x1(t) and x2(t) without zero padding

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤1,...
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤1, 0 otherwise. (a) Find the marginal density of X1. (b) Find the marginal density of X2. (c) Are X1 and X2 independent?(why/why not) (d) Find the conditional density of X2 given X1 = x1 (e) Compute Cov(X1,X2)
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤10...
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2^2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤10 , otherwise. (a) Find the marginal density of X1. (b) Find the marginal density of X2. (c) Are X1 and X2 independent?(why/why not) (d) Find the conditional density of X2 given X1 = x1 (e) Compute Cov(X1,X2)
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and...
if X1, X2 have the joint pdf f(x1, x2) = 4x1(1-x2) ,     0<x1<1 0<x2<1 and 0,                  otherwise 1- Find the probability P(0<X1<1/3 , 0<X2<1/3) 2- For the same joint pdf, calculate E(X1X2) and E(X1 + X2) 3- Calculate Var(X1X2)
Let (X1, X2) have joint pdf f(x1, x2) = (2/9)x1x22, 0 <= x1 <= 1, 0...
Let (X1, X2) have joint pdf f(x1, x2) = (2/9)x1x22, 0 <= x1 <= 1, 0 <= x2 <= 3 (i) What is the distribution of Y = X1 + X2? (ii) What is the distribution of Y = X1 * X2? (iii) Find the expectation E(X1 + X2) (iv) Find the expectation E(X1X2)
(i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2)...
(i) Find the probability P(0<X1<1/3 , 0<X2<1/3) where X1, X2 have the joint pdf                    f(x1, x2) = 4x1(1-x2) ,     0<x1<1  0<x2<1                                       0,                  otherwise (ii) For the same joint pdf, calculate E(X1X2) and E(X1+ X2) (iii) Calculate Var(X1X2)
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0....
Let X1 and X2 have the joint pdf f(x1,x2) = 8x1x2    0<x1 <x2 <1 0. elsewhere What are the marginal pdfs of x1 and x2? Find the expected values of x1 and x2. 3.   What is the expected value of X1X2? (Hint: Define g(X1, X2) = X1X2 and extend the definition of expectation of function of a random variable to two variables as follows: E[g(X1, X2)] = ? ? g(x1, x2)f(x1, x2)dx1dx2. 4. Suppose that Y = X1/X2. What...
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0...
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0 for the input 1 and x2≥0 for the input 2. The prices of input 1 and input 2 are given as w1>0 and w2>0, respectively. Answer the following questions. Which returns to scale does the production function exhibit? Derive the long-run conditional input demand functions and the long-run cost function.
Find the number of solutions to x1+x2+x3+x4=16 with integers x1 ,x2, x3, x4 satisfying (a)  xj ≥...
Find the number of solutions to x1+x2+x3+x4=16 with integers x1 ,x2, x3, x4 satisfying (a)  xj ≥ 0, j = 1, 2, 3, 4; (b) x1 ≥ 2, x2 ≥ 3, x3 ≥ −3, and x4 ≥ 1; (c) 0 ≤ xj ≤ 6, j = 1, 2, 3, 4
Find the number of integer solutions to x1+x2+x3=20 given the following restrictions: (A) x1>=3, x2>=2,x3>=5 (B)...
Find the number of integer solutions to x1+x2+x3=20 given the following restrictions: (A) x1>=3, x2>=2,x3>=5 (B) x1>=0, x2>=0, x3<=6
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2 2, x1 −1≤ x2 ≤1−x1, 0≤ x1...
LetX1 andX2 have joint density function f(x1,x2) =( 30x1x2 2, x1 −1≤ x2 ≤1−x1, 0≤ x1 ≤10 , otherwise. (a) Find the marginal density ofX1. (b) Find the marginal density ofX2. (c) AreX1 andX2 independent?(why/why not) (d) Find the conditional density ofX2 givenX1 = x1 (e) Compute Cov(X1,X2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT