Question

A single phase 3kVA 480/240 V 50 Hz transformer has the following parameters: High voltage side:...

A single phase 3kVA 480/240 V 50 Hz transformer has the following parameters:

High voltage side: r1 = 0.25 Ω Xl1 = 0.75

Low voltage side: r2 = 0.05 Ω Xl2 = 0.18

a) Draw the equivalent circuit with quantities referred to the low voltage side;

b) Determine the voltage regulation when the transformer is supplying full load at 240 Vrms and 0.9 power factor lagging;

c) If the load terminals are accidentally short-circuited determine the currents in the high voltage and low voltage windings.

Neglect core losses

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A single phase transformer rated at 3000 KVA, 69kV, 60 Hz has a total internal impedance...
A single phase transformer rated at 3000 KVA, 69kV, 60 Hz has a total internal impedance Zp of 127ohm, referred to the primary side. Calculate: a) primary and secondary currents b) voltage regulation from no load to full load for 2000 kW resistive load, knowing that the primary voltage supply is fixed at 69 kV. c) primary and secondary currents if the secondary is accidentally short circuited.
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω,...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω, Xp= 4.0 Ω, Rs= 2.5 Ω, Xs= 2.0 Ω, Rc= 60 KΩ, and Xm = 15 KΩ. The transformer is operating at full load with a power factor of 0.707 lagging. The magnetizing branch impedance can be ignored. a) Draw the transformer’s equivalent T-circuit, b) Find the equivalent winding impedance referred to the high side, c) Calculate the primary and secondary currents, d) Determine...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω,...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω, Xp= 4.0 Ω, Rs= 2.5 Ω, Xs= 2.0 Ω, Rc= 60 KΩ, and Xm = 15 KΩ. The transformer is operating at full load with a power factor of 0.707 lagging. The magnetizing branch impedance can be ignored. a) Draw the transformer’s equivalent T-circuit, b) Find the equivalent winding impedance referred to the high side, c) Calculate the primary and secondary currents, d) Determine...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V...
Three 1-φ, 100 kVA, 1730/208 V, 60 Hz transformer are connected to form a 3-φ1730/480 V transformer bank. The equivalent impedance of each transformer referred to the high voltage side is 0.3 + j0.4 ohms. The transformer delivers 40 kW to the load at 0.8 p.f. leading. a) Determine the phase and the line currents at the primary and the secondary sides. b) Draw the equivalent per-phase circuit refereed to the primary side and determine the primary volt
A three-phase transformer has a nameplate rating of 20 MVA, and the voltage rating of 345kV...
A three-phase transformer has a nameplate rating of 20 MVA, and the voltage rating of 345kV wye /34.5kV delta with a leakage reactance of 12% and transformer connection is wye-delta. Select a base of 20 MVA and 345 kV on the high-voltage side. Please determine the following: (a) Turn ratio of windings (b) Transformer reactance referred to low-voltage side in ohms (c) Transformer reactance referred to low-voltage side in per units
Use MATLAB: A three-phase Y-A transformer is rated 225-kV:24-kV, 400 MVA and has a series reactance...
Use MATLAB: A three-phase Y-A transformer is rated 225-kV:24-kV, 400 MVA and has a series reactance of 6.08 Ohms as referred to its high-voltage terminals. The transformer is supplying a load of 375 MVA, with 0.89 power factor lagging at a voltage of 24 kV (line-to-line) on its low-voltage side. It is supplied from a feeder whose impedance is 0.17 + j 2.2 Ohms connected to its high-voltage terminals. The total load in the system remains constant at 375 MVA....
A 525 V to 110 V, 50 Hz, single phase transformer has a no-load current on...
A 525 V to 110 V, 50 Hz, single phase transformer has a no-load current on the HV side, of 0,5 A at a power factor of 0.36 lagging. Answer the following questions regarding this transformer: 3.1 If a load current of 24 A flows on the LV side, at a power factor of 0.8 lagging, find the value of the primary current and the power factor.   State the assumption and sketch the phasor diagram representing this situation.    (10) 3.2...
A 10-kVA, 250 / 100-V, 50-Hz single-phase transformer gave the following open and short circuit test...
A 10-kVA, 250 / 100-V, 50-Hz single-phase transformer gave the following open and short circuit test results: Open circuit test: 250 V, 2.6 A, power factor: 0.3 on HV side. Short circuit test: 18 V, 80 A, input power: 240 W on HV side. Calculate the following: 4.1 The equivalent circuit parameters of the transformer. (6) 4.2 The efficiency at full load unity power factor. (NB the test current is not at full load) (6) 4.3 The load at which...
A 20 kVA single phase transformer 4800/480V has primary resistance and reactance of 5Ω and 15Ω...
A 20 kVA single phase transformer 4800/480V has primary resistance and reactance of 5Ω and 15Ω respectively, while the resistance and reactance of secondary winding is 0.1Ω and 0.15 Ω respectively. Calculate: (i) The parameter referred to primary side of transformer and draw the equivalent circuit (ii) The approximate value of secondary voltage at full load power factor of 0.8 lagging if 4.8kV primary supply
a) A three phase transformer rated at 30 MVA 10 kV(Δ)/1 kV(Y) is supplying a load...
a) A three phase transformer rated at 30 MVA 10 kV(Δ)/1 kV(Y) is supplying a load at the low voltage side. The load absorbs 5 MVA, 0.7 power factor lagging at line to line voltage 0.9 kV. The transformer has an equivalent reactance 0.05 Ω/phase. Assuming 10 MVA and 1 kV as base value, draw the per unit diagram for the system. Find the Line to Line voltage at the primary side of the transformer. b) A three-phase synchronous generator...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT