Question

Suppose you have the same three-phase induction motor as the following conditions. It has conditions of...

Suppose you have the same three-phase induction motor as the following conditions. It has conditions of rated output=80]kW", rated voltage=[220V] and polarity=4 and is operated at slip s=0.05 with efficiency of 90%. In this case, determine primary input [kW], secondary efficiency [%], rotor input power [kW], and rotor copper loss [kW].

Homework Answers

Answer #1

Feel free to ask if you have any query.Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
There is a 4-pole three-phase induction motor of 20 kW, 60 Hz. At this time, the...
There is a 4-pole three-phase induction motor of 20 kW, 60 Hz. At this time, the slip is 0.05 when the load is applied, find secondary copper loss and secondary input.
Q4) A three-phase, 104 kW, 3300 V, 50 Hz, Y-connected induction motor delivers full output power...
Q4) A three-phase, 104 kW, 3300 V, 50 Hz, Y-connected induction motor delivers full output power to a load connected to its shaft. The full-load slip is 0.02 and full-load power factor is 0.85 lagging. If the stator copper loss is 2400 W, the stator core loss is 3500 W, and the friction and windage loss is 1200 W. Calculate: (i) The developed mechanical power. (ii) The air gap power. (iii) The rotor copper loss. (iv) The efficiency of the...
A 100 KW (OUT PUT), 3300V, 50 Hz, 3-Phase star connected induction motor has a synchronous...
A 100 KW (OUT PUT), 3300V, 50 Hz, 3-Phase star connected induction motor has a synchronous speed of 500 rpm. The full load slip is 1.8%and full load power factor 0.85. Stator copper loss=2440W. Iron loss=3500W. Rotational losses= 1200W. calculate : The rotor copper loss The line current The full load motor efficiency.
A three-phase, 280 V, 60 Hz, 20 hp, 1710 r/m. Y-connected induction motor has the following...
A three-phase, 280 V, 60 Hz, 20 hp, 1710 r/m. Y-connected induction motor has the following impedances in ohms per phase referred to the stator circuit: R1=0.12 Ω.                Rˈ2=0.1 Ω X1=Xˈ2=0.25 Ω        Xm=10 Ω A total rotational loss are 400 W. The core loss is lumped in with the rotational losses. For a slip of 0.05 at the rated voltage and rated frequency. Find: a) The numbers of poles of the motor. b) The stator current. c) the power factor...
Q4 (a) A 3-phase induction motor having a synchronous speed of 1200rpm draws 80kW from a...
Q4 (a) A 3-phase induction motor having a synchronous speed of 1200rpm draws 80kW from a 3-phase feeder. The copper losses and core losses in the stator amount to 5kW. If the motor runs at 1152rpm, calculate: (i) the rotor input power; (ii) the rotor copper losses; (iii) the gross mechanical power output; (iv) the net mechanical power with knowing that the windage and friction losses are 2kW; (v) the efficiency of the motor (b) Compare the brushed motor (DC...
A three phase Wye-connected 460 v, 4 poles, 60 Hz wound rotor induction motor has the...
A three phase Wye-connected 460 v, 4 poles, 60 Hz wound rotor induction motor has the following parameters: R1=0.3, R2=0.15, X1=0.5, X2=0.2, Xm=14 The total friction, windage, and core loss is constant at 400 w. The motor is working at its rated voltage and drives its load at 1764 rpm. a)Calculate the input current and the input power. b)Calculate the output mechanical power and torque and motor efficiency. c)Calculate the starting current of this motor and compare it with its...
Q1. A 440 V, 60 Hz, six-pole, 3 phase induction motor is taking 50 kVA at...
Q1. A 440 V, 60 Hz, six-pole, 3 phase induction motor is taking 50 kVA at 0.8 power factor and is running at a slip of 2.5 percent. The stator copper losses are 0.5 kW and rotational losses are 2.5 kW. i) The rotor copper losses ii) The shaft hp iii) The efficiency iv) The shaft torque
A 208 V 10 Hp four pole 60 Hz Y connected induction motor has a full...
A 208 V 10 Hp four pole 60 Hz Y connected induction motor has a full load slip of 5%. What is the output power of this motor in kW? If friction and windage loss is 350 watts, what is the gross mechanical output at full load? What is the gross torque of this motor at full load? What is the rotor cupper loss at full load? If the efficiency of this motor is 90% at full load what is...
A 480V, 60Hz, 50hp, three phase induction motor draws 60 amps at 0.85 power factor lagging....
A 480V, 60Hz, 50hp, three phase induction motor draws 60 amps at 0.85 power factor lagging. The stator copper losses are 2kW and the rotor copper losses are 700W. The friction and windage losses are 600W, the core losses are 1800W. (1) Determine the airgap power. (2) Determine the power converted into mechanical form. (3) Determine the net output power. (4) Determine the efficiency of the motor.
The following test data apply to a 7.5-hp, three-phase, 220-V, 19-A,60-Hz, four-pole induction motor with a...
The following test data apply to a 7.5-hp, three-phase, 220-V, 19-A,60-Hz, four-pole induction motor with a double-squirrel-cage rotor of design class C (high-starting-torque, low-starting current type): Test 1: No-load test at 60 Hz; Applied voltage V = 219 V line-to-line; Average phase current I1,nl = 5.70 A; Power Pnl =380 W; Test 2: Blocked-rotor test at 15 Hz; Applied voltage V = 26.5 V line-to-line; Average phase current ll,bl = 18.57 A; Power Pbl = 675 W; Test 3: Average...