Question

In a radio frequency circuit, a 100Ω resistor serves as a load at the end of...

In a radio frequency circuit, a 100Ω resistor serves as a load at the end of a 50Ω transmission line. We wish to connect a capacitor, C, in parallel to the input of the line so that a source with output impedance of
50 Ω do not see reflections.

a. Determine the minimum length of the transmission line in terms of
long wave.

b. Determine the value of the capacitor reactance.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a circuit of frequency radius, a resistance of 200? serves as a load at the...
In a circuit of frequency radius, a resistance of 200? serves as a load at the end of a 50 ? transmission line. We wish to connect a capacitor, C, in parallel with the entrance line so that a source with 50 ? exit impedance doesn't see reflections a) Determine the minimum length of the transmission line in terms of wave length. b) Determine the reactance value of the capacitor.
in a circuit of radio frequency, a resistance of 165 ohms serves as load to the...
in a circuit of radio frequency, a resistance of 165 ohms serves as load to the final of a transmission line of 75 ohms. We wish to use a parallel open stub to achieve maximum power transfer. Use the smith chart to get values. a) Determine the minimum distance in wavelengths from the load that has to be connected to the stub. b) Determine the minimum length of the stub in wave lengths.
A series circuit consists of an ac source of variable frequency, a 127 Ω resistor, a...
A series circuit consists of an ac source of variable frequency, a 127 Ω resistor, a 1.45 μF capacitor, and a 5.00 mH inductor. a.) Find the impedance of this circuit when the angular frequency of the ac source is adjusted to the resonance angular frequency. Express your answer in ohms. b.) Find the impedance of this circuit when the angular frequency of the ac source is adjusted to twice the resonance angular frequency. Express your answer in ohms. c.)...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
The resistor (? =40 Ω), capacitor (? = 5 μF) and inductor (? = 2mH) are...
The resistor (? =40 Ω), capacitor (? = 5 μF) and inductor (? = 2mH) are connected in parallel to the source of alternating voltage. Find the impedance of the circuit for the frequency ?1 = 60 Hz and ?2 = 20 kHz
2. Figure 1 on the following page shows an LRC circuit with the resistor of 10...
2. Figure 1 on the following page shows an LRC circuit with the resistor of 10 Ω, the capacitor of 330 μF, and the inductor of 8.2 mH. ( a) Calculate the resonance frequency in radian/s for the LRC circuit. (b) If the angular frequency of the applied AC source is 628 radian/s, calculate The impedance of the resistor = The impedance of the capacitor = The impedance of the inductor = (c) If the current is measured as I(t)...
1. A lossless transmission line of length l = 0.3λ is terminated with complex load impedance...
1. A lossless transmission line of length l = 0.3λ is terminated with complex load impedance ZL = 30+ j20 Ω and characteristic impedance Z0 = 75 Ω. Calculate: a. The input impedance to the line Zin in Ω; b. The input admittance to the line Yin in S; c. The distance to first minimum from the load; d. Use Smith Chart to all above parameters
16. In an RLC circuit, a resistor R x 8 Ohm, a capacitor of 330 micro...
16. In an RLC circuit, a resistor R x 8 Ohm, a capacitor of 330 micro Faraday, and an inductance of 50 mH are connected in series. The circuit is connected to an alternating source that delivers a voltage equal to: V-250- without (314 t) (volts) Identify and calculate: a) The maximum voltage of the source. b) The frequency of the source. c) The RMS voltage of the source. d) Capacitive reactance. e) Inductive reactance. f) The impedance of the...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
Design the circuit of a source follower JFET amplifier biasing circuit with load RL and input...
Design the circuit of a source follower JFET amplifier biasing circuit with load RL and input voltage internal resistance RS that having a gain of +0.2. The specification of the circuit is given as below: Supply voltage, VCC = +12 V; Input impedance, Zi = 10 k; cut-off frequency from source capacitor, fLS = 40 Hz; cut-off frequency from gate capacitor, fLG = 4 Hz; VGSQ = -2.86 V; IDSS = 16 mA and Vp = -4 V
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT