Question

(a) Calculate the conductivity and resistance of a silicon sample. Given that: area = 5 cm2,...

(a) Calculate the conductivity and resistance of a silicon sample. Given that: area = 5 cm2, length = 1 cm, electron mobility = 1000 cm2/(V × s), and number of free electrons = 1 X 1010

cm-3 at 300K. (3 points equation 1 point, correct answer 1.5 points and correct unit 0.5 point)

(b) If we increase the temperature, will resistance increase, decrease or remain same? Explain (1 point)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the resistance of a pure silicon wire, 3 cm long, and with a cross sectional...
Calculate the resistance of a pure silicon wire, 3 cm long, and with a cross sectional area of 2 mm x 2 mm, at room temperature. Repeat for a sample of silicon with the same geometry but doped with arsenic to a concentration of 10^18 cm^3. Assume that the carrier mobilities are 1500 cm2/Vs and 450 cm2/Vs for electrons and holes, respectively.
A plane loop of wire enclosing an area of 4.90 cm2 and having a resistance of...
A plane loop of wire enclosing an area of 4.90 cm2 and having a resistance of 1.0 *10-3 Ω is placed inside a long solenoid. The plane of the loop makes an angle of 60° with the solenoid's axis. The solenoid has 113 turns per cm of length, and at some instant carries a current of 5.0 A. The current is increasing at the rate of 2.8 103 A/s. Find the torque on the loop. Correct answer is .000293 N*m
If V = 2 V, L = 2 cm, W = 1 cm, H = 0.3...
If V = 2 V, L = 2 cm, W = 1 cm, H = 0.3 cm, and material conductivity σ=5 S/m, a. Calculate the electric field in the resistor (assume uniform throughout). b. Calculate the force on a single electron. c. Calculate the material resistivity (conductivity is given). Report your answer in Ω-cm. d. Using your answer from (a), and knowing J=σE, calculate the current density flowing in the resistor. e. Calculate the resistance of the resistor. f. Using...
Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration Nd...
Design an ideal abrupt silicon PN-junction at 300 K such that the donor impurity concentration Nd (in cm?3) in n-side is Nd = 5×1015/cm3 and the acceptor impurity concentration Na in the p-side is Na = 715 ×1015/cm3. Given: the diode area A = 2×10?3 cm2, ni = 1010/cm3, ?n = 10?8 s and ?p = 10?7 s Determine the following when a forward bias of 0.6 V is applied to the diode: 1. What are the values (in ?m)...
What is the change in length of a metal rod with an original length of 4...
What is the change in length of a metal rod with an original length of 4 m, a coefficient of thermal expansion of 0.00002/ ° C, and a temperature change of 30° C? 1. 2.4 mm 2. 12 mm 3. 1.2 mm 4. 24 mm Determine the number of electrons passing through a point in the wire in 8 minutes when the current is 10 A. a. 3 * 1016 electrons b. none of these c. 4,800 electrons d. 1.6...
3. Consider the region R in the first quadrant enclosed by y = x, y =...
3. Consider the region R in the first quadrant enclosed by y = x, y = x/2, and y = 5. (a) Sketch this region, making sure to identify and label all points of intersection. (b) Find the area of R, using the method of your choice. (c) Using the method of your choice, set up an integral for the volume of the solid resulting from rotating R around the y-axis. Do NOT evaluate the integral. (d) Using the method...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT