Question

A generator feeds two equal loads in parallel by means of an ideal transformer, if the...

A generator feeds two equal loads in parallel by means of an ideal transformer, if the impedance of the conductors is neglected, the transformer ratio is 10 and the parameters of each load are 65 KVA, power factor of 0.80 (lagging) and 240 volts; find the parameters of the generator (voltage, current, apparent power)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three loads are connected in parallel across a 1500 Vrms - 60 hz. Load 1 absorbs...
Three loads are connected in parallel across a 1500 Vrms - 60 hz. Load 1 absorbs 23 kW and 14 kVAr capacitive. Load 2 absorbs 70 kVA with power factor 0.7 lagging. Load 3 absorbs 22kW with power factor = 1. Find: a) Complex impedance, seen from power source b) Power Factor of the setup and module of Rms current supplied by the source c) Complex impedance of Load 2 d) Value of capacitor to be connected to the combination...
A 100 MVA, 13.2 kV three phase generator (G) having a synchronous reactance of 10% is...
A 100 MVA, 13.2 kV three phase generator (G) having a synchronous reactance of 10% is connected to a three phase Y-Y transformer T1 which feeds a 132 kV 10 miles transmission line having an impedance per phase of 2 + j5 ?/mile. At the receiving end of the transmission line is a Y-Y step down transformer T2. Three loads are connected to the secondary side of the transformer T2. Loads are as follows: Load#1 40 MVA at 0.8 pf...
A Wye-Delta transformer is connected to a 66 kV input three-phase transmission line. Each transformer is...
A Wye-Delta transformer is connected to a 66 kV input three-phase transmission line. Each transformer is rated at 1000 kVA and has a step-down ratio of 8:1. The bank supplies a balance load having a power factor of 0.8 lag with a load current of 70 A. Assume ideal transformer, determine. The primary line and phase voltages The secondary line and phase voltages The secondary line and phase currents The apparent and active power at the load Total kVA capacity...
A 10-kVA, 250 / 100-V, 50-Hz single-phase transformer gave the following open and short circuit test...
A 10-kVA, 250 / 100-V, 50-Hz single-phase transformer gave the following open and short circuit test results: Open circuit test: 250 V, 2.6 A, power factor: 0.3 on HV side. Short circuit test: 18 V, 80 A, input power: 240 W on HV side. Calculate the following: 4.1 The equivalent circuit parameters of the transformer. (6) 4.2 The efficiency at full load unity power factor. (NB the test current is not at full load) (6) 4.3 The load at which...
Two AC loads connected in parallel draw power from a 60 Hz, 120-Vrms source. Load 1...
Two AC loads connected in parallel draw power from a 60 Hz, 120-Vrms source. Load 1 draws 350 W at a lagging power factor of 0.7. Load 2 draws 500 VA at a leading power factor of 0.5. a. (5) Calculate the effective (rms magnitude) current drawn by load 1. b. (10) Calculate the impedance of Load 1. c. (5) Calculate the total complex power drawn by both loads combined. d. (5) Determine the PF of the combined load. Specify...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω,...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω, Xp= 4.0 Ω, Rs= 2.5 Ω, Xs= 2.0 Ω, Rc= 60 KΩ, and Xm = 15 KΩ. The transformer is operating at full load with a power factor of 0.707 lagging. The magnetizing branch impedance can be ignored. a) Draw the transformer’s equivalent T-circuit, b) Find the equivalent winding impedance referred to the high side, c) Calculate the primary and secondary currents, d) Determine...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω,...
A 2.2 KVA, 440---220 V, 60 Hz, step-down transformer has the following parameters: Rp= 3.0 Ω, Xp= 4.0 Ω, Rs= 2.5 Ω, Xs= 2.0 Ω, Rc= 60 KΩ, and Xm = 15 KΩ. The transformer is operating at full load with a power factor of 0.707 lagging. The magnetizing branch impedance can be ignored. a) Draw the transformer’s equivalent T-circuit, b) Find the equivalent winding impedance referred to the high side, c) Calculate the primary and secondary currents, d) Determine...
Problem 2. A three phase transformer rated at 5 MVA, 115/13.2 kV has a per phase...
Problem 2. A three phase transformer rated at 5 MVA, 115/13.2 kV has a per phase series impedance of 0.007 + j0.075 per unit (shunt parameters are ignored). The low voltage side is connected to a short distribution line which modeled by a series per phase impedance of 0.02 +j0.1 per unit on the base of 10 MVA. The line supplies a balanced three phase constant impedance load at 4 MVA, 13.2 kV with power factor of 0.85 lagging •...
29. Where the outside feeder disconnecting means consists of more than one switch or circuit breaker,...
29. Where the outside feeder disconnecting means consists of more than one switch or circuit breaker, determining the rating of the disconnecting means shall be permitted to be done by _____. A. Adding all circuit breakers and dividing by 2 B. Adding connected load and dividing by 1732 C. Combining the ratings of all the switches or circuit breakers D. Calculating the load by taking the first 3,000 VA at 100 percent 30. A 480/240 Volt, Step-down transformer with a...