Question

A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.20...

A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.20 Ω is in a 1.0 mT magnetic field, with the coil oriented for maximum flux. The coil is connected to an uncharged 3.0 μF capacitor rather than to a current meter. The coil is quickly pulled out of the magnetic field.

Afterward, what is the voltage across the capacitor?
Hint: Use I =dq/dt to relate the net change of flux to the amount of charge that flows to the capacitor.

Homework Answers

Answer #1

Please upvote. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.60?...
A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.60? is in a 1.0 mT magnetic field, with the coil oriented for maximum flux. The coil is connected to an uncharged 3.0?F capacitor rather than to a current meter. The coil is quickly pulled out of the magnetic field. A) Afterward, what is the voltage across the capacitor?
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a...
A 159 ‑turn circular coil of radius 3.49 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 10.9 Ω resistor to create a closed circuit. During a time interval of 0.141 s, the magnetic field strength decreases uniformly from 0.539 T to zero. Find the energy ? in millijoules that is dissipated in the resistor during this time interval.
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a...
A 173 ‑turn circular coil of radius 2.79 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 11.9 Ω resistor to create a closed circuit. During a time interval of 0.161 s, the magnetic field strength decreases uniformly from 0.673 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval. energy:____________ mJ
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω)...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω) is placed in a uniform magnetic field that is perpendicular to the plane of the loop. The magnitude of the field changes with time according to ? = 90sin(7?) mT, where ? is measured in seconds. Determine the magnitude of the current induced in the loop at ?=?/7 s.
An 1000-turn coil of wire that is 2.2 cm in diameter is in a magnetic field...
An 1000-turn coil of wire that is 2.2 cm in diameter is in a magnetic field that drops from 0.12 T to 0 T in 11 ms . The axis of the coil is parallel to the field. What is the emf of the coil? E = ______V Please show work
A generator consists of a 15-cm by 16-cm rectangular loop with 500 turns of wire spinning...
A generator consists of a 15-cm by 16-cm rectangular loop with 500 turns of wire spinning at 60 Hz in a 25 mT uniform magnetic field. The generator output is connected to a series RC circuit consisting of a 150 Ω and a 35 μF capacitor.
1 a) A certain tightly-wound coil of wire is perpendicular to an external magnetic field. The...
1 a) A certain tightly-wound coil of wire is perpendicular to an external magnetic field. The magnetic field has a strength of 3.4 mT, and the coil is circular with a radius of 10.7 cm. If I run a current of 4.5 A through the wire (in the right direction), I can cause the net flux through the coil to be zero. If the coil has 26 turns, what is its inductance? Express your answer in mH (millihenrys). b) An...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a...
A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.60 s.
A 85-turn circular coil has diameter 4.2 cm and resistance 2.7 Ω . This coil is...
A 85-turn circular coil has diameter 4.2 cm and resistance 2.7 Ω . This coil is placed inside a solenoid, with coil and solenoid axes aligned. The solenoid has 4800 turns of wire and is 25 cm long. If the solenoid current increases steadily from 0 to 10 A in 2.7 s , find the induced emf in the coil.
A flat circular coil having 15 turns, each of a radius of 18.0 cm, is in...
A flat circular coil having 15 turns, each of a radius of 18.0 cm, is in a uniform and steady 0.130-T magnetic field. The coil has a resistance of 8.00 a) Find the total magnetic flux through one turn of the coil when the field is parallel to the axis of the coil. b) If the coil is rotated in 12.0 ms so its axis is perpendicular to the field, find the average induced voltage and the induced current in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT