Question

A 1500W heating element is submerged in 1L of 20°C water. Assuming that container is perfectly...

A 1500W heating element is submerged in 1L of 20°C water. Assuming that container is perfectly insulated, estimate time needed to raise the temperature of the water to 100°C.

Homework Answers

Answer #1

Answer:

Amount of heat required to raise temperature of m kg of water by T degrees is given by

Q = C*m*T

Where C is the specific heat of water = 4186 J/kg-K

Here m = 1 kg (1 liter of water has a mass of 1kg)

T = 100 -20 = 80 Deg.

Hence energy required to raise the temperature from 20 deg. to 100 deg. is:

Q = 4186 * 1*80

Q = 334,880 J

We know that Power = Energy/Time,

Therefore Time = Energy/Power = 334880/1500 = 223.25 seconds, or

time = 3 minutes, 43 seconds approx

Hope this helps

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.29 g lead weight, initially at 10.6 ∘C, is submerged in 8.24 g of water...
A 2.29 g lead weight, initially at 10.6 ∘C, is submerged in 8.24 g of water at 52.6 ∘C in an insulated container. What is the final temperature of both the weight and the water at thermal equilibrium?
A 2.60 g lead weight, initially at 10.7 ∘C, is submerged in 8.18 g of water...
A 2.60 g lead weight, initially at 10.7 ∘C, is submerged in 8.18 g of water at 52.0 ∘C in an insulated container What is the final temperature of both the weight and the water at thermal equilibrium?
A 2.76 g lead weight, initially at 10.7 ∘C, is submerged in 8.17 g of water...
A 2.76 g lead weight, initially at 10.7 ∘C, is submerged in 8.17 g of water at 52.6 ∘C in an insulated container. What is the final temperature of both the weight and the water at thermal equilibrium? Express the temperature in Celsius to three significant figures.
A 2.28 g lead weight, initially at 11.1 ∘C, is submerged in 8.15 gof water at...
A 2.28 g lead weight, initially at 11.1 ∘C, is submerged in 8.15 gof water at 52.8 ∘C in an insulated container. What is the final temperature (degrees Celsius) of both the weight and the water at thermal equilibrium?
A silver block, initially at 59.3 ∘C, is submerged into 100.0 g of water at 25.3...
A silver block, initially at 59.3 ∘C, is submerged into 100.0 g of water at 25.3 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 26.5 ∘C. What is the mass of the silver block?
A silver block, initially at 55.0 ∘C, is submerged into 100.0 g of water at 25.2...
A silver block, initially at 55.0 ∘C, is submerged into 100.0 g of water at 25.2 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.8 ∘C. What is the mass of the silver block?
A 2.53 g lead weight, initially at 10.1∘C, is submerged in 8.17 g of water at...
A 2.53 g lead weight, initially at 10.1∘C, is submerged in 8.17 g of water at 52.4 ∘C in an insulated container. (this is all that was given). What is the final temperature of both substances at thermal equilibrium?
A silver block, initially at 55.6 ∘C, is submerged into 100.0 g of water at 25.2...
A silver block, initially at 55.6 ∘C, is submerged into 100.0 g of water at 25.2 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.3 ∘C. Part A What is the mass of the silver block?
(a) A well-insulated electric water heater warms 121 kg of water from 20.0°C to 47.0°C in...
(a) A well-insulated electric water heater warms 121 kg of water from 20.0°C to 47.0°C in 27.0 min. Find the resistance (in Ω) of its heating element, which is connected across a 240 V potential difference.   Ω (b) What If? How much additional time (in min) would it take the heater to raise the temperature of the water from 47.0°C to 100°C?   min (c) What would be the total amount of time (in min) required to evaporate all of the...
1. A silver block, initially at 55.1 ∘C, is submerged into 100.0 g of water at...
1. A silver block, initially at 55.1 ∘C, is submerged into 100.0 g of water at 24.9 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 27.2 ∘C. What is the mass of the silver block? (Express answer to two significant figures and appropriate units)