Question

Joan is endowed with $200 in year one and $200 in year two. She can borrow...

Joan is endowed with $200 in year one and $200 in year two. She can borrow and lend at an interest rate of 5% p.a. Joan has a utility function given by U(C1,C2) = -e^-aC1C2 (a) Write down Joan’s marginal rate of inter-temporal substitution and budget constraint. (b) Find Joan’s optimal consumption bundle (C1* and C2*). Is Joan a borrower or a lender? What is the value of her utility function at the optimal bundle if a= 1/10000? (c) Suppose that the interest rate Joan faces falls to 2% p.a.? What consumption bundle will she choose under these conditions? What is the value of her utility function at the new optimum?

Homework Answers

Answer #1

A. It won’t change your answer. You earn all your income in period 1 and have to save to consume in period 2. so only the lending rate is relevant for the analysis here and that is unchanged.

B. Period One:-C1< 100000

Period Two :- C2 < [100000-C1] 1+r)

Here period 2 budget constraint encompasses period 1 budget constraint and after reaaranging the overall budget constraint can be written as

C1+ 1/ C2< 100000

C. Budget Constraint is:-

C1+1/1.2(C2)< 100000

now UC2=1/1.2=5/6

WHICH IS LESS THAN PART b) EFFECTIVE PRICE OF UC2

SO UC2 HAS DECREASED FROM 10/11 TO 5/6

Both budget lines interest are on same axis so their interest differ accordingly.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that Jessica has the following utility, U = C1^1/2 C2^1/2 and that she earns $400...
Suppose that Jessica has the following utility, U = C1^1/2 C2^1/2 and that she earns $400 in the first period and $700 in the second period. Her budget constraint is given by C1 + C2/1+r = Y1 + Y2/1+r . The interest rate is 0.25 (i.e., 25%). She wants to maximize her utility. (a) What are her optimal values of C1 and C2? (b) Is Jessica a borrower or a saver in period 1? (c) Suppose the real interest rate...
Hira has the utility function U(c1; c2) = c11/2 +2c21/2 where c1 is her consumption in...
Hira has the utility function U(c1; c2) = c11/2 +2c21/2 where c1 is her consumption in period 1 and c2 is her consumption in period 2. She will earn 100 units in period 1 and 100 units in period 2. She can borrow or lend at an interest rate of 10%. Write an equation that describes Hira’s budget. What is the MRS for the utility function between c1 and c2? Now assume that she can save at the interest rate...
2.Consider the inter-temporal model of consumption studied in class, with two possible periods. Assume that initially...
2.Consider the inter-temporal model of consumption studied in class, with two possible periods. Assume that initially that an individual is a saver. If the interest rate rises, which statement is false? a. The individual will never become a borrower. b.The individual will necessarily increase their savings. c.The individual must remain a saver d. The individual could increase or decrease their savings, but she must remain a saver. 4. Consider the inter-temporal model of consumption studied in class, with two possible...
Anthony has an income of $10,000 this year, and he expects an income of $5,000 next...
Anthony has an income of $10,000 this year, and he expects an income of $5,000 next year. He can borrow and lend money at an interest rate of 10%. Consumption goods cost $1 per unit this year and there is no inflation. a. What is the present value of his endowment? b. What is the future value of his endowment? c. Write an equation to represent his budget set. Graph his budget set? Label it well. d. If his utility...
Consider a consumer with preferences over current and future consumption given by U (c1, c2) =...
Consider a consumer with preferences over current and future consumption given by U (c1, c2) = c1c2 where c1 denotes the amount consumed in period 1 and c2 the amount consumed in period 2. Suppose that period 1 income expressed in units of good 1 is m1 = 20000 and period 2 income expressed in units of good 2 is m2 = 30000. Suppose also that p1 = p2 = 1 and let r denote the interest rate. 1. Find...
Consider a consumer with preferences over current and future consumption given by U (c1, c2) =...
Consider a consumer with preferences over current and future consumption given by U (c1, c2) = c1c2 where c1 denotes the amount consumed in period 1 and c2 the amount consumed in period 2. Suppose that period 1 income expressed in units of good 1 is m1 = 20000 and period 2 income expressed in units of good 2 is m2 = 30000. Suppose also that p1 = p2 = 1 and let r denote the interest rate. 1. Find...
Assume the representative consumer lives in two periods and his preferences can be described by the...
Assume the representative consumer lives in two periods and his preferences can be described by the utility function U(c,c′)=c1/3 +β(c′)1/3, where c is the current consumption, c′ is next period consumption, and β = 0.95. Let’s assume that the consumer can borrow or lend at the interest rate r = 10%. The consumer receives an income y = 100 in the current period and y′ = 110 in the next period. The government wants to spend G = 30 in...
Consider an individual who lives two periods. He works in both periods and receives a labor...
Consider an individual who lives two periods. He works in both periods and receives a labor income of 200 euros in the first period and 220 euros in the second. The interest rate of the economy is 10%. The consumption in period 1 is c1, and in period 2 it is c2. The price of the consumption good is 1 in both periods. The utility function of this individual is U(c1,c2 )=c11/2c21/2. Suppose there is a proportional tax on labor...
Consider the following consumption decision problem. A consumer lives for two periods and receives income of...
Consider the following consumption decision problem. A consumer lives for two periods and receives income of y in each period. She chooses to consume c1 units of a good in period 1 and c2 units of the good in period 2. The price of the good is one. The consumer can borrow or invest at rate r. The consumer’s utility function is: U = ln(c1) + δ ln(c2), where δ > 0. a. Derive the optimal consumption in each period?...
Consider an individual who lives two periods. He works in both periods and receives a labor...
Consider an individual who lives two periods. He works in both periods and receives a labor income of 200 euros in the first period and 220 euros in the second. The interest rate of the economy is 10%. The consumption in period 1 is c1, and in period 2 it is c2. The price of the consumption good is 1 in both periods. The utility function of this individual is U(c1,c2 )=c11/2c21/2. Suppose there is a proportional tax on labor...