Question

Consider two Von Neumann-Morgenstern utility functions ?1(?) and ?2(?) where 0≤?≤∞. Suppose ?1(?) and ?2(?) are...

Consider two Von Neumann-Morgenstern utility functions ?1(?) and ?2(?) where 0≤?≤∞. Suppose ?1(?) and ?2(?) are both differentiable over all ?, ?1′(?)>0, and ?2′(?)>0. For all cases where ?2(?) is an affine transformation of ?1(?), show that ?1(?) and ?2(?) have equal Arrow-Pratt absolute risk aversion measures.

Homework Answers

Answer #1

which is same*

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let L denote the set of simple lotteries over the set of outcomes C = {c1,c2,c3,c4}....
Let L denote the set of simple lotteries over the set of outcomes C = {c1,c2,c3,c4}. Consider the von Neumann-Morgenstern utility function U : L → R defined by U(p1,p2,p3,p4)=p2u2 +p3u3 +4p4, where ui,i = 2,3, is the utility of the lottery which gives outcomes ci, with certainty. Suppose that the lottery L1 = (0, 1/2, 1/2,0) is indifferent to L2 = (1/2,0,0, 1/2) and that L3 = (0, 1/3, 1/3, 1/3) is indifferent to L4 = (0, 1/6, 5/6,0)....
Consider the following cases where preferences are characterized by some unusual utility functions. For each utility,...
Consider the following cases where preferences are characterized by some unusual utility functions. For each utility, carefully draw a set of 3 indifference curves withU1 <U2<U3. a) Peter consumes good apples together with bad, poisonous ones that she dislikes. b) Bob consumes herbal products regularly. However, some herbs become ineffective when being taken in conjunction. Regarding two herbal products, A and B, Winnie’s utility function is given by U(A, B) = max (A, 3B). Given PX = 0.4, PY =...
Consider an individual whose utility function over wealth is U(W), where U is increasing smoothly in...
Consider an individual whose utility function over wealth is U(W), where U is increasing smoothly in W (U’ > 0) and convex (U’’ > 0). a. Draw a utility function in U-W space that fits this description. b. Explain the connection between U’’ and risk aversion c. True or false: this individual prefers no insurance to an actuarially fair, full contract. Briefly explain your answer
Consider V = fp(t) 2 P2 : p0(1) = p(0)g, where P2 is a set of...
Consider V = fp(t) 2 P2 : p0(1) = p(0)g, where P2 is a set of all polynomials of degree less than or equal to 2. (1) Show that V is a subspace of P2 (2) Find a basis of V and the dimension of V
suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3....
suppose and are functions that are differentiable at x=0 and that f(1)=2, f'(1)=-1, g(1)=-2, and g'(1)=3. Find the value of h'(1). 1) h(x)=f(x) g(x) 2) h(x)=xf(x) / x+g(x)
1. Consider the functions ?(?) = √? + 1 , ?(?) = 2? 4−? , and...
1. Consider the functions ?(?) = √? + 1 , ?(?) = 2? 4−? , and ?(?) = ? 2 − 5 (a) Find ?(0), ?(0), ?(0) (b) (??)(?) (c) (? ∘ ?)(?) (d) Find the domain of (? ∘ ?)(?) (e) Find and simplify ?(?+ℎ)−?(?) ℎ . (f) Determine if ? is an even function, odd function or neither. Show your work to justify your answer. 2. Sketch the piecewise function. ?(?) = { |? + 2|, ??? ?...
1. Consider the general form of the utility for goods that are perfect complements. a) Why...
1. Consider the general form of the utility for goods that are perfect complements. a) Why won’t our equations for finding an interior solution to the consumer’s problem work for this kind of utility? Draw(but do not submit) a picture and explain why (4, 16) is the utility maximizing point if the utility is U(x, y) = min(2x, y/2), the income is $52, the price of x is $5 and the price of y is $2. From this picture and...
2) For two agents, a and b, with the following utility functions over goods x and...
2) For two agents, a and b, with the following utility functions over goods x and y (6) ua=ua(xa,ya)=xaya ub=ub(xb,yb)=xbyb a) Determine the slope of the contract curve in the interior of an Edgeworth box that would show this two-person two-goods situation. b) For initial endowments ωa=(12,7) and ωb=(9,10), what is the Walras allocation between the two agents a and b? (Remember that it is the relative price of the goods that matters in this consideration. Also remember that all...
Bernoulli’s log utility function for wealth reflects decreasing _____ with increasing wealth Assets Risk Marginal utility...
Bernoulli’s log utility function for wealth reflects decreasing _____ with increasing wealth Assets Risk Marginal utility Cost None of the above Linear utility functions model: Risk-neutral attitudes Risk-seeking attitudes Risk-averse attitude None of the above Concave utility functions model: Risk-neutral attitudes Risk-seeking attitudes Risk-averse attitudes All of the above. John Doe is a rationale person whose satisfaction or preference for various amounts of money can be expressed as a function U(x) = (x/100)^2, where x is in $. How much...
Suppose an individual consumers two goods, with utility function U (x1; x2) = x1 + 6(x1x2)^1/2...
Suppose an individual consumers two goods, with utility function U (x1; x2) = x1 + 6(x1x2)^1/2 + 9x2. Formulate the utility maximization problem when she faces a budget line p1x1 + p2x2 = I. Find the demand functions for goods 1 and 2. (b) Now consider an individual consumers with utility function U (x1; x2) = x1^1/2 + 3x2^1/2. Formulate the utility maximization problem when she faces a budget line p1x1 + p2x2 = I. Find the demand functions for...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT