Question

Zhixiu has the following linear preferences over coffee (x) and candy (y): u(x,y)=2x+5y d. Solve the...

Zhixiu has the following linear preferences over coffee (x) and candy (y): u(x,y)=2x+5y

d. Solve the utility maximization problem for x* and y* when m=150 and px=10.

e. Graph Zhixiu's demand function for candy y* as py changes when her income is m=150 and the price of candy is px=10. Be sure to label any kink points in your graph.

f. Set up the expenditure minimization problem for Zhixiu.

g. Solve the expenditure minimization problem for x^c and y^c when \bar{u} =50 and the price of candy is px=10.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The consumer’s Utility Function is U(x,y) = X1/2Y1/2. Further Px = $5 and Py = $10...
The consumer’s Utility Function is U(x,y) = X1/2Y1/2. Further Px = $5 and Py = $10 and the consumer has $500 to spend. The values of x* = 50 and y* = 25 maximizes utility. The dual to the utility maximization problem is expenditure minimization problem where the consumer choose x and y to minimize the expenditure associated with achieving a specified level of utility. That is, Choose x and y to Minimize Expenditure 5x + 10y subject to U...
5. Harry Mazola [4.7] has preferences u = min (2x + y, x + 2y). Graph...
5. Harry Mazola [4.7] has preferences u = min (2x + y, x + 2y). Graph the u = 12 indifference curve. Mary Granola has preferences u = min (8x + y, 3y + 6x). Graph the u = 18 indifference curve. 6. A consumer with m = 60 is paying pY = 2. They must pay pX = 4 for the first 5 units of good x but then pay only pX = 2 for additional units. The horizontal...
2. Yan has preferences over chocolate(x)and vanilla(y)ice cream that are represented by the following utility function:...
2. Yan has preferences over chocolate(x)and vanilla(y)ice cream that are represented by the following utility function: u(x,y) = xy4 3 Notice the power (4/3) just affects good y. (a) Yan is an ice cream connoisseur, meaning, when deciding how much ice cream to buy, there is a minimum level of utility he must reach with ice cream consumption. But he doesn’t want to spend too much money because he is a graduate student. Setup Yan’s constrained expenditure minimization problem. (1...
A consumer's preferences are given by the utility function u=(107)^2+2(x-5)y and the restrictions x>5 and y>0...
A consumer's preferences are given by the utility function u=(107)^2+2(x-5)y and the restrictions x>5 and y>0 are imposed. 1. Write out the Lagrangian function to solve the consumer's choice problem. Use the Lagrangian to derive the first order conditions for the consumer's utility maximizing choice problem. Consider only interior solutions. Show your work. 2. Derive the Optimal consumption bundles x*(px,py,w) and y*(px,py,w) 3. Use the first order condition from 1 to calculate the consumer's marginal utility of income when w=200,...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) =...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) = X +3Y the price of good X is Px= 20, the price of good Y is Py= 40, and her income isI = 400 Choose the quantities of X and Y which, for the given prices and income, maximize her utility.
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are...
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are px and py respectively. Jane’s income is I. (a) Find the Marshallian demands for x and y and the indirect utility function. (b) Without solving the cost minimization problem, recover the Hicksian demands for x and y and the expenditure function from the Marshallian demands and the indirect utility function. (c) Write down the Slutsky equation determining the effect of a change in px...
Consider a consumer with the utility function U(x, y) = min(3x, 5y). The prices of the...
Consider a consumer with the utility function U(x, y) = min(3x, 5y). The prices of the two goods are Px = $5 and Py = $10, and the consumer’s income is $220. Illustrate the indifference curves then determine and illustrate on the graph the optimum consumption basket. Comment on the types of goods x and y represent and on the optimum solution.
. Suppose utility is given by the following function: u(x, y) = min(2x, 3y) Suppose Px...
. Suppose utility is given by the following function: u(x, y) = min(2x, 3y) Suppose Px = 4, Py = 6, and m = 24. Use this information to answer the following questions: (a) What is the no-waste condition for this individual? (b) Draw a map of indifference curves for these preferences. Be sure to label your axes, include the no-waste line, and draw at least three indifference curves. (c) Given prices and income, what is the utility-maximizing bundle of...
Sharon has the following utility function: U (X,Y)= sqrt(X)+sqrt(Y) where X is her consumption of candy...
Sharon has the following utility function: U (X,Y)= sqrt(X)+sqrt(Y) where X is her consumption of candy bars, with price Px=$1 , and Y is her consumption of espressos, with price Py= $4 . a. Derive Sharon’s demand for candy bars and espressos. A. X=0.906I and Y=1.456I B. X=1.352I and Y=1.456I C. X=0.800I and Y=0.050I D. X=1.241Iand Y=1.929I E. X=0.157I and Y=0.050I b. Assume that her income is I=$100 . How many candy bars and espressos will Sharon consume? c. What...
Suppose a consumer's preferences are given by U(X,Y) = X*Y. Therefore the MUX = Y and...
Suppose a consumer's preferences are given by U(X,Y) = X*Y. Therefore the MUX = Y and MUY = X. Suppose the price of good Y is $1 and the consumer has $80 to spend (M = 80).   Sketch the price-consumption curve for the values PX = $1 PX = $2 PX = $4 To do this, carefully draw the budget constraints associated with each of the prices for good X, and indicate the bundle that the consumer chooses in each...