Question

Consider the following regression model, y = β0 + β1xA + β2xB + β3xA·xB + u...

Consider the following regression model, y = β0 + β1xA + β2xB + β3xA·xB + u (1). Which of the following statements is correct?

a.

When the partial effect of an explanatory variable xA on the dependent variable depends on the magnitude of another explanatory variable xB, we say explain it by only looking that the coefficient of  xA.

b.

When there is an interaction effect between variable xA and variable xB, the partial effect of xA on the dependent variable is β3.

c.

To test whether there is an interaction effect between variable xA and variable xB in model (1), one can simply run a t test of significance on β3.

d.

All of the above.

Homework Answers

Answer #1

Answer: c) To test whether there is an interaction effect between variable xA and variable xB in model (1), one can simply run a t test of significance on β3

..

When there is an interaction effect between variable xA and variable xB, the partial effect of xA on the dependent variable is given by β1

When the partial effect of an explanatory variable xA on the dependent variable depends on the magnitude of another explanatory variable xB, we say explain it by only looking that the coefficient of xA*xB.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the multiple regression model E(Y|X1 X2) = β0 + β1X1 + β2X2 + β3X1X2 Can...
Consider the multiple regression model E(Y|X1 X2) = β0 + β1X1 + β2X2 + β3X1X2 Can we interpret β1 as the change in the conditional mean response for a unit change in X1 holding all the other predictors in the model fixed? Group of answer choices a. Yes, because that is the traditional way of interpreting a regression coefficient. b. Yes, because the response variable is quantitative and thus the partial slopes are interpreted exactly in that manner. c. No,...
6. An ice cream cone demand regression model is given as:               Y = β0 +...
6. An ice cream cone demand regression model is given as:               Y = β0 + β1T + β2S + u, where: Y = number of cones (in thousands) sold per week T = average temperature during the week S = the price of a cup of frozen yogurt (a substitute for ice cream) in dollars a. List the independent variables.   c. How many explanatory variables are there in the model? b. List the regressors.                      d. List the dependent variables....
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1,...,n . Transform the regression to allow you to easily test the null hypothesis that β1 + β3 = 1. State the new null hypothesis associated to this transformed regression.
The coefficient of determination will increase when another explanatory variable is added to the regression model...
The coefficient of determination will increase when another explanatory variable is added to the regression model even if the new explanatory variable does not have a statistically significant relationship with the dependent variable. True False
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i...
Consider the following (generic) population regression model: Yi = β0 + β1X1,i + β2X2,i + β3X3,i + ui, i = 1, ..., n (∗) Transform the regression to allow you to easily test the null hypothesis that β1 + β3 = 1. State the new null hypothesis associated to this transformed regression. Would you expect to reject or accept the null hypothesis? Why?
15-12: Consider the following regression model:                       y=β0+β1x1+β2x2+ε where:         &
15-12: Consider the following regression model:                       y=β0+β1x1+β2x2+ε where:             x1=A quantitative variable             x2=1 if x1<20                  0 if x1>20 The following estimate regression equation was obtained from a sample of 30 observations:             y^=24.1+5.8x1+7.9x2 Provide the estimate regression equation for instances in which x1<20. Determine the value of y^ when x1=10. Provide the estimate regression equation for instances in which x1>20. Determine the value of y^ when x1=30. please not handwritten so I can read it
Model: Y = β0 + β1X + u If E(u|X) 6= 0, then we know the...
Model: Y = β0 + β1X + u If E(u|X) 6= 0, then we know the OLS estimator will be biased and all further inference like Hypothesis test and Confidence interval will be invalid. In presence of such violation, we can go to Instrument variable estimation/regression method to rebuild the valid empirical study. Assume there is a “good” instrument variable Z for X. (1) How would you argue this is a valid instrument variable?(Hint: validity condition and relevance condition) (2)...
Model: Y = β0 + β1X + u If E(u|X) 6= 0, then we know the...
Model: Y = β0 + β1X + u If E(u|X) 6= 0, then we know the OLS estimator will be biased and all further inference like Hypothesis test and Confidence interval will be invalid. In presence of such violation, we can go to Instrument variable estimation/regression method to rebuild the valid empirical study. Assume there is a “good” instrument variable Z for X. (1) How would you argue this is a valid instrument variable?(Hint: validity condition and relevance condition) (2)...
The statistical model for simple linear regression is written as μy = β0 + β1*x, where...
The statistical model for simple linear regression is written as μy = β0 + β1*x, where μy represents the mean of a Normally distributed response variable and x represents the explanatory variable. The parameters β0 and β1 are estimated, giving the linear regression model defined by μy = 70 + 10*x , with standard deviation σ = 5. (multiple choice question) What is the distribution of the test statistic used to test the null hypothesis H0 : β1 = 0...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + ...
7) Consider the following regression model Yi = β0 + β1X1i + β2X2i + β3X3i + β4X4i + β5X5i + ui This model has been estimated by OLS. The Gretl output is below. Model 1: OLS, using observations 1-52 coefficient std. error t-ratio p-value const -0.5186 0.8624 -0.6013 0.5506 X1 0.1497 0.4125 0.3630 0.7182 X2 -0.2710 0.1714 -1.5808 0.1208 X3 0.1809 0.6028 0.3001 0.7654 X4 0.4574 0.2729 1.6757 0.1006 X5 2.4438 0.1781 13.7200 0.0000 Mean dependent var 1.3617 S.D. dependent...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT