Question

Again consider the Solow model economic production function, Y = A * K^a * L^(1-a) Assume...

Again consider the Solow model economic production function,

Y = A * K^a * L^(1-a)

Assume the following initial conditions:

A = 1.5

a = 0.31

K = 11

L = 86

Additionally, you know that depreciation rate is 15 % and the savings rate is 20 %. Assuming no changes in any of the parameters, besides the change in K over time, what is the long-run equilibrium level of capital?

Homework Answers

Answer #1

Consider the given problem here the production function is given by, “Y=A*K^a*L^1-a. Now, here “L” is fixed, => we don’t have to take “L” into consideration.

So, the change in the “K” is given by the difference between “s*Y” and the “d*K”.

=> Change in K = s*Y – d*K . Now, in the LR equilibrium the “change in K” must be zero.

=> change in K = 0, => s*Y = d*K, => (s/d)* A*K^a*L^1-a = K.

=> (0.2/0.15)* 1.5*K^a*(86^1-0.31) = K, => 1.3333* 1.5*21.6174 = K^1-a.

=> K^1-0.31 = 43.2337, => K^0.69 = 43.2337, => K = (43.2337)^(1/0.69) = 234.83, => K=234.83.

So, the LR equilibrium “K” is given by, “K = 234.83.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Again consider the Solow model economic production function, Y = A * K^a * L^(1-a) Assume...
Again consider the Solow model economic production function, Y = A * K^a * L^(1-a) Assume the following initial conditions: A = 1.7 a = 0.48 K = 12 L = 112 Additionally, you know that depreciation rate is 23 % and the savings rate is 23 %. What will be the total capital (K) at the end of the first period (beginning of second period)?
Consider the Solow model economic production function, Y = A * K^a * L^(1-a) Assume the...
Consider the Solow model economic production function, Y = A * K^a * L^(1-a) Assume the following initial conditions: A = 1.8 a = 0.4 K = 11 L = 109 Additionally, you know that depreciation rate is 6 % and the savings rate is 13 %. What will be the total capital (K) at the end of the first period (beginning of second period)?
Consider the Solow growth model. The production function is given by Y = K^αN^1−α, with α...
Consider the Solow growth model. The production function is given by Y = K^αN^1−α, with α = 1/3. There are two countries: X and Y. Country X has depreciation rate δ = 0.05, population growth n = 0.03, and savings rate s = 0.24. Country X starts with initial capital per worker k0 = 1 Country Y has depreciation rate δ = 0.08, population growth n = 0.02, and savings rate s = 0.3. Country Y starts with capital per...
Assume that an economy described by the Solow model has the production function Y = K...
Assume that an economy described by the Solow model has the production function Y = K 0.4 ( L E ) 0.6, where all the variables are defined as in class. The saving rate is 30%, the capital depreciation rate is 3%, the population growth rate is 2%, and the rate of change in labor effectiveness (E) is 1%. For this country, what is f(k)? How did you define lower case k? Write down the equation of motion for k....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L)....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L). L is number of workers and Y is the capital stock. Production function F(K,L) has constant returns to scale and diminishing marginal returns to capital and labor individually. Economy works under assumption that technology is constant over time. The economy is in the steady-state capital per worker. Draw graph. Next scenario is that the rate of depreciation of capital increases due to climate change...
A country is described by the Solow model with a production function of y=k^(1/2). Suppose that...
A country is described by the Solow model with a production function of y=k^(1/2). Suppose that k is equal to 400. The fraction of output invested is 50%. The depreciation rate is 5%. a. How does k change at this level? b. What is the steady state level of k? c. Suppose the level of k is 900. How does this change affect the rate of change of k to the steady state?
1. If the technology (production function) and all the Solow model parameters are same for two...
1. If the technology (production function) and all the Solow model parameters are same for two economies, they will eventually converge to the same steady state levels of per-capita capital even if they start at different levels of initial k. True False 2. If the technology (production function) and all the Solow model parameters are same for two economies, more time taken will be needed to reach steady state for the economy with high initial level of per-capita capital? True...
Consider the production function Y = F (K, L) = Ka * L1-a, where 0 <...
Consider the production function Y = F (K, L) = Ka * L1-a, where 0 < α < 1. The national saving rate is s, the labor force grows at a rate n, and capital depreciates at rate δ. (a) Show that F has constant returns to scale. (b) What is the per-worker production function, y = f(k)? (c) Solve for the steady-state level of capital per worker (in terms of the parameters of the model). (d) Solve for the...
(Neoclassical Growth Model). Consider the production function f(k) = Ak0.25, with A = 1, the saving...
(Neoclassical Growth Model). Consider the production function f(k) = Ak0.25, with A = 1, the saving rate s = 0.25, and the depreciation and population growth rates rates d = 0.15 and n = 0.10. The steady state level of capital per capita is k* = 1. For k0 = 0.5 and k0 = 1.5, as initial capital per capita, ll the values of per capita capital, output, the MPK, savings, required investment and the net capital accumulated (△k) in...
Use the Solow model to solve. Suppose, you are the chief economic advisor to a small...
Use the Solow model to solve. Suppose, you are the chief economic advisor to a small African country with an aggregate per capita production function of  y=2k1/2. Population grows at a rate of 1%. The savings rate is 12%, and the rate of depreciation is 5%. (a) On a graph, show the output, break-even investment, and savings functions for this economy (as a function of capital per worker). Denote steady-state capital per worker k* and steady-state output per worker y*. Label...