Question

Wheat is produced according to the production function Q = 100 K^0.8 L^0.2 a. Beginning with...

Wheat is produced according to the production function Q = 100 K^0.8 L^0.2

a. Beginning with a capital input of 4 and a labor input of 49, show that the marginal product of labor and the marginal product of capital are both decreasing.

b. Does this production function exhibit increasing, decreasing, or constant returns to scale?

please explain in 4 sentences thank you!

Homework Answers

Answer #1

a) Marginal Product of Labour = MPL = dQ/dL = 20*K^0.8*L^-0.8

Marginal Product of Capital = MPK = 80*K^(-0.2)*L^0.2

As you can see clearly as labour and capital increases, the marginal product of labour and marginal product of capital respectively decreases (because L has negative power in MPL and K has negative power in MPK and therefore any increase in them will cause a decrease in MP)

b) According to the definition:

If both K and L increase by x times then if

1) Q increases by less than x times ---> Decreasing return to scale

2) Q increases by x times --> Constant return to scale

3) Q increases by more than x times --> Increasing return to scale

Increasing both K and L by x times,

Q* = 100*(x*K)^0.8*(x*L)^0.2 = x*(100*K^0.8*L^0.2) = x*Q

Since Q has also increased by x times therefore, there is constant returns to scale.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.   Bridgestone Company has the following production function for tires: Q = 20 K 0.2 L...
2.   Bridgestone Company has the following production function for tires: Q = 20 K 0.2 L 0.8, where K represents machine hours and L represents labor hours. They pay $ 15 per hour to rent their machines and $ 10 per hour to their workers. They have $ 12,000 to spend on capital and labor. A. Does this production function exhibit constant, increasing, or decreasing returns to scale? B. Does this production function exhibit diminishing marginal returns to capital and...
A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL...
A firm produces output according to the production function. Q=sqrt(L*K) The associated marginal products are MPL = .5*sqrt(K/L) and MPK = .5*sqrt(L/K) (a) Does this production function have increasing, decreasing, or constant marginal returns to labor? (b) Does this production function have increasing, decreasing or constant returns to scale? (c) Find the firm's short-run total cost function when K=16. The price of labor is w and the price of capital is r. (d) Find the firm's long-run total cost function...
Consider the production function Q = f(L,K) = 10KL / K+L. The marginal products of labor...
Consider the production function Q = f(L,K) = 10KL / K+L. The marginal products of labor and capital for this function are given by MPL = 10K^2 / (K +L)^2, MPK = 10L^2 / (K +L)^2. (a) In the short run, assume that capital is fixed at K = 4. What is the production function for the firm (quantity as a function of labor only)? What are the average and marginal products of labor? Draw APL and MPL on one...
The production function for the Roundtree Laser Company is: Q=(10L^.5)(K^.3)(M^.3) where: Q: number of lasers produced...
The production function for the Roundtree Laser Company is: Q=(10L^.5)(K^.3)(M^.3) where: Q: number of lasers produced per week L: amount of labor used per week K: the amount of capital used per week M: quantity of raw materials used per week a) Does the production function exhibit decreasing returns to scale? b) Does the production function exhibit diminishing marginal returns?
Suppose a competitive firm’s production function is Y= 20 L1/2 K1/3. L is Labor , K...
Suppose a competitive firm’s production function is Y= 20 L1/2 K1/3. L is Labor , K is capital and Y is output. a) (4) Find the marginal product of labor and capital. b) (4) What is Marginal Rate of technical Substitution of Labor for Capital? c) (2) Does this production function exhibit increasing, decreasing or constant returns to scale? Show your work.
Suppose the production function for widgets is given by: q = kl – 0.8k2 – 0.2l2,...
Suppose the production function for widgets is given by: q = kl – 0.8k2 – 0.2l2, where q represents the annual quantity of widgets produced, k represents annual capital input, and l represents annual labor input. Which of the following statements is correct? a. The widget production function exhibits constant returns to scale. b. The widget production function exhibits increasing returns to scale. c. The widget production function exhibits decreasing returns to scale. d. The widget production function is homogeneous...
Suppose the production function for widgets is given by              q = kl -0.8k2- 0.2l2, where...
Suppose the production function for widgets is given by              q = kl -0.8k2- 0.2l2, where q represents the annual quantity of widgets produced, k represents annual capital input, and l represents annual labor input. Suppose k = 10; graph the total and average productivity of labor curves. At what level of labor input does this average productivity reach maximum? How many widgets are produced at that point? Again, assuming that k = 10, graph the MPL curve. At what...
2. A firm has the following linear production function: q = 5L + 2K a. Does...
2. A firm has the following linear production function: q = 5L + 2K a. Does this firm’s production function exhibit diminishing returns to labor?    b. Does this production function exhibit diminishing returns to capital? c. Graph the isoquant associated with q = 20. d. What is the firm’s MRTS between K and L? e. Does this production technology exhibit decreasing, constant, or increasing returns to scale?
Suppose a firm’s production function is given by Q = 2K^1/2 * L^1/2 , where K...
Suppose a firm’s production function is given by Q = 2K^1/2 * L^1/2 , where K is capital used and L is labour used in the production. (a) Does this production function exhibit increasing returns to scale, constant returns to scale or decreasing returns to scale? (b) Suppose the price of capital is r = 1 and the price of labour is w = 4. If a firm wants to produce 16 chairs, what combination of capital and labor will...
An electronics plant’s production function is Q = L 2K, where Q is its output rate,...
An electronics plant’s production function is Q = L 2K, where Q is its output rate, L is the amount of labour it uses per period, and K is the amount of capital it uses per period. (a) Calculate the marginal product of labour (MPL) and the marginal product of capital (MPK) for this production function. Hint: MPK = dQ/dK. When taking the derivative with respect to K, treat L as constant. For example when Q = L 3K2 ,...