Question

Consider the production function q=aK + bL. a. Show that the cost-minimizing choice of K and...

Consider the production function q=aK + bL.

a. Show that the cost-minimizing choice of K and L may not be unique. (The cost-minimizing K and L levels are those used at a firm’s cost-minimizing point; the levels are not unique if there is more than one optimal combination of K and L for any one isoquant.)

b. Show on a diagram that, if the cost-minimizing choice of inputs is unique, it will generally entail the use of only K or only L. Under what conditions would the firm choose only K (and no L)? That is, what is the mathematical relationship between w/r and b/a when the firm chooses only K?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A firm’s production function is Q = min(K , 2L), where Q is the number of...
A firm’s production function is Q = min(K , 2L), where Q is the number of units of output produced using K units of capital and L units of labor. The factor prices are w = 4 (for labor) and r = 1 (for capital). On an optimal choice diagram with L on the horizontal axis and K on the vertical axis, draw the isoquant for Q = 12, indicate the optimal choices of K and L on that isoquant,...
A firm produces an output with the production function Q=K*L2, where Q is the number of...
A firm produces an output with the production function Q=K*L2, where Q is the number of units of output per hour when the firm uses K machines and hires L workers each hour. The marginal product for this production function are MPk =L2 and MPl = 2KL. The factor price of K is $1 and the factor price of L is $2 per hour. a. Draw an isoquant curve for Q= 64, identify at least three points on this curve....
a. A cost minimizing firm’s production is given by Q=L1/2K1/2. Suppose the desired output is Q=10....
a. A cost minimizing firm’s production is given by Q=L1/2K1/2. Suppose the desired output is Q=10. Let w=12 and r=4. What is this firm’s cost minimizing combination of K & L? What it the total cost of producing this output? b. Suppose the firm wishes to increase its output to Q=12. In the short run, the firm’s K is fixed at the amount found in (a), but L is variable. How much labor will the firm use? What will the...
a. A cost minimizing firm’s production is given by Q=L^(1/2)K^(1/2) . Suppose the desired output is...
a. A cost minimizing firm’s production is given by Q=L^(1/2)K^(1/2) . Suppose the desired output is Q=10. Let w=12 and r=4. What is this firm’s cost minimizing combination of K & L? What it the total cost of producing this output? b. Suppose the firm wishes to increase its output to Q=12. In the short run, the firm’s K is fixed at the amount found in (a), but L is variable. How much labor will the firm use? What will...
3. A firm’s production function is Q=min(K, 3L ). Input prices a re as follows: w=$...
3. A firm’s production function is Q=min(K, 3L ). Input prices a re as follows: w=$ 2 and r=$1. On the optimal choice diagram below, draw the isoquant for Q=12. Calculate the optimal choice of K and L for this level of output as well as the total cost. Then, draw in (with a dotted line) the isocost line consistent with your Total Cost value. It won't let me copy the graph template but it is a simple graph with...
1. Consider the production function q=K2L0.5   a) Find the cost minimizing quantities of K and L...
1. Consider the production function q=K2L0.5   a) Find the cost minimizing quantities of K and L for q = 100, r as the price of K and w as the price of L. b) Find the cost minimizing quantities of K and L for q = 1000, r as the price of K and w as the price of L. Explain whether or not the output expansion [change from part a) to part b)] is labor saving or capital saving.
There are two inputs labor, L, and capital, K. Their cost minimizing levels are given by...
There are two inputs labor, L, and capital, K. Their cost minimizing levels are given by K(y) = 2y and L(y) =y^2.L and K are respectively priced w=1/2 and r= 3 .a) Find the firm’s cost curve. b) What is the firm’s exit price c) Graphically show how the long run supply curve is derived from cost curves (make sure to label the axes, the curves, the intercepts, and the slope). d) A tp= $12, what is the profit-maximizing level...
The firms production function is: Q=2L^2/3 K^1/3 A) Suppose the firm wants to determine the cost...
The firms production function is: Q=2L^2/3 K^1/3 A) Suppose the firm wants to determine the cost minimizing combination for L and K for any given values of q, w, and r. Solve for the the firms factor demand functions for L and K (i.e. express the optimal quantity of L and K in terms of W, r and Q) B) Using these factor demand functions, solve for the firm's long run cost function.
A firm’s production process is represented by y= L^2/3 K^1/3. The price of Labor, w is...
A firm’s production process is represented by y= L^2/3 K^1/3. The price of Labor, w is $2 and the price of capital, r, is $27. (a) Write down the firm’s cost minimization problem (b) What is the firm’s MRTS? (c) What are the firm’s cost minimizing levels of labor and capital (these will both be functions of y)? (d) What is the firm’s cost curve (ie, derive C(y))? (e) If the firm chooses output y= 450, what are the firms...
A firm’s production technology is given by the production function q = 0.25 LK where L...
A firm’s production technology is given by the production function q = 0.25 LK where L represents labor hours, K machine hours and q the amount of output. The market wage and rental rates are, w= $16 and r = $256. The firm is operating in the long run where it can adjust both inputs. (b) Suppose that the firm wants to produce 100 units of output. Determine the cost minimizing combination of L and K. Calculate the resulting long...