Question

4.   Consider an individual making choices over two goods, x and y with prices px =...

4.   Consider an individual making choices over two goods, x and y with prices px = 3 and py = 4, and who has income I = $120 and her preferences can be represented by the utility function U(x; y) = x2y2.  Suppose the government imposes a sales tax of $1 per unit on good x: ( Hint: You need to find the initial, final, and hypothetical optimal consumption bundles, their corresponding maximized utility levels and/or minimized expenditure and compare. )

Calculate the substitution effect and Income effect (on good x) after the price change.

Find the government tax revenues (T), the equivalent lump sum tax (L), and the dead weight loss (DWL). (Hint: Expenditure minimization at the final level of utility.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider an individual making choices over two goods, x and y with prices px = 3...
Consider an individual making choices over two goods, x and y with prices px = 3 and py = 4, and who has income I = 120 and her preferences can be represented by the utility function U(x,y) = x2y2. Suppose the government imposes a sales tax of $1 per unit on good x: (a) Calculate the substitution effect and Income effect (on good x) after the price change. Also Illustrate on a graph. (b) Find the government tax revenues...
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are...
Jane’s utility function has the following form: U(x,y)=x^2 +2xy The prices of x and y are px and py respectively. Jane’s income is I. (a) Find the Marshallian demands for x and y and the indirect utility function. (b) Without solving the cost minimization problem, recover the Hicksian demands for x and y and the expenditure function from the Marshallian demands and the indirect utility function. (c) Write down the Slutsky equation determining the effect of a change in px...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10...
Consider the utility function U(x,y) = xy Income is I=400, and prices are initially px =10 and py =10. (a) Find the optimal consumption choices of x and y. (b) The price of x changes, to px =40, while the price of y remains the same. What are the new optimal consumption choices for x and y? (c) What is the substitution effect? (d) What is the income effect?
Zhixiu has the following linear preferences over coffee (x) and candy (y): u(x,y)=2x+5y d. Solve the...
Zhixiu has the following linear preferences over coffee (x) and candy (y): u(x,y)=2x+5y d. Solve the utility maximization problem for x* and y* when m=150 and px=10. e. Graph Zhixiu's demand function for candy y* as py changes when her income is m=150 and the price of candy is px=10. Be sure to label any kink points in your graph. f. Set up the expenditure minimization problem for Zhixiu. g. Solve the expenditure minimization problem for x^c and y^c when...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) =...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) = X +3Y the price of good X is Px= 20, the price of good Y is Py= 40, and her income isI = 400 Choose the quantities of X and Y which, for the given prices and income, maximize her utility.
2. Consider an economy with two goods, x and y with prices px and py, respectively....
2. Consider an economy with two goods, x and y with prices px and py, respectively. We observe the following choices made by Rob: if px > py he chooses to consume only y, and if py > px he chooses to consume only x. Suggest a utility function for Rob that represents preferences consistent with the given data. (5m) 3. Consider a market for used cars. There are many sellers and even more buyers. A seller values a high...
Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility...
Consider a consumer with Cobb-Douglas preferences over two goods, x and y described by the utility function u(x, y) = 1/3ln(x) + 2/3n(y) 1. Assume the prices of the two goods are initially both $10, and her income is $1000. Obtain the consumer’s demands for x and y. 2. If the price of good x increases to $20, what is the impact on her demand for good x? 3. Decompose this change into the substitution effect, and the income effect....
A consumer's preferences are given by the utility function u=(107)^2+2(x-5)y and the restrictions x>5 and y>0...
A consumer's preferences are given by the utility function u=(107)^2+2(x-5)y and the restrictions x>5 and y>0 are imposed. 1. Write out the Lagrangian function to solve the consumer's choice problem. Use the Lagrangian to derive the first order conditions for the consumer's utility maximizing choice problem. Consider only interior solutions. Show your work. 2. Derive the Optimal consumption bundles x*(px,py,w) and y*(px,py,w) 3. Use the first order condition from 1 to calculate the consumer's marginal utility of income when w=200,...
2. Yan has preferences over chocolate(x)and vanilla(y)ice cream that are represented by the following utility function:...
2. Yan has preferences over chocolate(x)and vanilla(y)ice cream that are represented by the following utility function: u(x,y) = xy4 3 Notice the power (4/3) just affects good y. (a) Yan is an ice cream connoisseur, meaning, when deciding how much ice cream to buy, there is a minimum level of utility he must reach with ice cream consumption. But he doesn’t want to spend too much money because he is a graduate student. Setup Yan’s constrained expenditure minimization problem. (1...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT