Question

Assume the representative consumer lives in two periods and his preferences can be described by the...

Assume the representative consumer lives in two periods and his preferences can be described by the utility function U(c,c′)=c1/3 +β(c′)1/3, where c is the current consumption, c′ is next period consumption, and β = 0.95. Let’s assume that the consumer can borrow or lend at the interest rate r = 10%. The consumer receives an income y = 100 in the current period and y′ = 110 in the next period. The government wants to spend G = 30 in the current period and G′ = 35 in the future period. The consumer pays a lump sum tax t in period 0 and t′ in period 0.

1. Write down the consumer’s intertemporal budget constraint. [03 points]

2. If the government sets t = 50, what will be the consumer’s estimate of the value of t′? [04 points] 1

3. Is it optimal for the consumer to consume his disposable income in each period? [10 points]

4. Solve the consumer’s problem by finding the optimal allocations c⋆ and c′⋆. [10 points]

5. Is the consumer a lender or a borrower? [03 points]

6. Assume the consumer has to choose between two different jobs. Job 1 offers him the in- come bundle (y1, y1′ )=(100, 110) while job 2 offers (y2, y2′ )=(110, 100). Which job will you recommend to the consumer? [10 points]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(Intertemporal Choice )Consider a consumer whose preferences over consumption today and consumption tomorrow are represented by...
(Intertemporal Choice )Consider a consumer whose preferences over consumption today and consumption tomorrow are represented by the utility function U(c1,c2)=lnc1 +?lnc2, where c1 and c2 and consumption today and tomorrow, respectively, and ? is the discounting factor. The consumer earns income y1 in the first period, and y2 in the second period. The interest rate in this economy is r, and both borrowers and savers face the same interest rate. (a) (1 point) Write down the intertemporal budget constraint of...
Consider an economy in which the representative consumer preferences are described by U(C, l) = 0.9...
Consider an economy in which the representative consumer preferences are described by U(C, l) = 0.9 ln(C) + 0.1 ln(l). The total number of hours available to the representative consumer is h = 1, and the market real wage is w. The representative firm produces the final consumption good using the technology function Y = zN where N is the labour, and z = 2. Assume the government sets the level of its spending to G = 0.75 which has...
3. Consider an individual who lives for two periods. His income in the first period is...
3. Consider an individual who lives for two periods. His income in the first period is !Y1 and his income in the second period is Y2. His consumption in the first period is !C1 and his consumption in the second period is C2. He can lend and borrow at zero real interest (!r = 0 ). (a) Write his budget constraint (again, assume !r = 0 ). (b) Assume that the government collects a lump sum tax of !T units...
Consider the following consumption decision problem. A consumer lives for two periods and receives income of...
Consider the following consumption decision problem. A consumer lives for two periods and receives income of y in each period. She chooses to consume c1 units of a good in period 1 and c2 units of the good in period 2. The price of the good is one. The consumer can borrow or invest at rate r. The consumer’s utility function is: U = ln(c1) + δ ln(c2), where δ > 0. a. Derive the optimal consumption in each period?...
Imagine an individual who lives for two periods. The individual has a given pattern of endowment...
Imagine an individual who lives for two periods. The individual has a given pattern of endowment income (y1 and y2) and faces the positive real interest rate, r. Lifetime utility is given by U(c1, c2)= ln(c1)+β ln(c2) Suppose that the individual faces a proportional consumption tax at the rate Ԏc in each period. (If the individual consumes X in period i then he must pay XԎc to the government in taxes period). Derive the individual's budget constraint and the F.O.C...
1. Consider the representative consumer’s problem as follows. The representative consumer maximizes utility by choosing the...
1. Consider the representative consumer’s problem as follows. The representative consumer maximizes utility by choosing the amount of consumption good C and the amount of leisure l . The consumer has h units of time available for leisure l and for working Ns , that is, h = l+Ns . Government imposes a proportional tax on the consumer’s wage income. The consumer’s after-tax wage income is then (1−t )w(h −l ), where 0 < t < 1 is the tax...
Suppose the following model of government efficiency. Utility function over consumption of private goods (C) and...
Suppose the following model of government efficiency. Utility function over consumption of private goods (C) and public goods (G) U(C,L) = C^0.5G^0.5 Exogenous Income: Y = 50 Lump-sum tax: T Budget constraint: C + T = Y PPF: C = Y – G/q Government efficiency: q = 0.8 (This measures the number of public goods that can be produced from one unit of private consumption good) We want to maximize the representative consumer’s utility and balance the government budget. Find...
A consumer likes two goods; good 1 and good 2. the consumer’s preferences are described the...
A consumer likes two goods; good 1 and good 2. the consumer’s preferences are described the by the cobb-douglass utility function U = (c1,c2) = c1α,c21-α Where c1 denotes consumption of good 1, c2 denotes consumption of good 2, and parameter α lies between zero and one; 1>α>0. Let I denote consumer’s income, let p1 denotes the price of good 1, and p2 denotes the price of good 2. Then the consumer can be viewed as choosing c1 and c2...
A representative consumer living in a Country A values consuming goods (C) and enjoys leisure (l)....
A representative consumer living in a Country A values consuming goods (C) and enjoys leisure (l). The consumer has h = 1 units of time to divide between working and enjoying leisure. For each hour worked, he receives w = 1.5 units of the consumption good. The consumer also owns shares in a factory which gives him an additional π = 0.55 units of income. The government in this economy taxes the consumer and uses the proceeds to buy consumption...
Smith lives in a world with two time periods: current period and future period. His income...
Smith lives in a world with two time periods: current period and future period. His income in each period is $10,000. A) Draw his intertemporal budget constraint when the interest rate is 33%. B) If Smith consumes $10,000 in each period, show his best affordable bundle and the indifference curve that passes through it. C) Graphically show how Smith's current consumption changes when the interest rate falls to 0%.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT