The PW-based relation for the incremental cash flow series to find Δi* between the lower first-cost alternative X and alternative Y has been developed.
0 = -30,000 + 9000(P/A,Δi*,10) + ( -5000(P/F,Δi*,10))0 = -30,000 +
9000(P/A,Δi*,10) + -5000(P/F,Δi*,10)
Determine the highest MARR value for which Y is preferred over
X.
Any MARR value greater than % favors Y.
Incremental cahs flow (Y-X) = -30,000 + 9000(P/A,Δi*,10) + ( -5000(P/F,Δi*,10))
To find i%, then
-30,000 + 9000(P/A,Δi*,10) + ( -5000(P/F,Δi*,10)) = 0
-30,000 + 9000(P/A,Δi*,10) -5000(P/F,Δi*,10) = 0
9000(P/A,Δi*,10) -5000(P/F,Δi*,10) = 30000
Dividing by 1000
9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 30
Using trail and error method
When i = 10%, value of 9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 53.37339
When i = 15%, value of 9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 43.93299
When i = 20%, value of 9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 36.92472
When i = 25%, value of 9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 31.59766
When i = 26%, value of 9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 30.68750
When i = 27%, value of 9*(P/A,Δi*,10) - 5 *(P/F,Δi*,10) = 29.82146
using interpolation
i = 26% + (30.68750 - 30) / (30.68750 - 29.82146) *(27%-26%)
i = 26% + 0.79385%
i = 26.79385%
i = 26.79%
Get Answers For Free
Most questions answered within 1 hours.