Question

. Present your formal analysis carefully and compute the Nash equilibria of the following location game...

. Present your formal analysis carefully and compute the Nash equilibria of the following location game in pure strategies. There are two people who simultaneously select numbers between zero and one. Suppose player 1 chooses s1 and player 2 chooses s2. If si < sj , then player i gets a payoff of (si+sj ) 2 and player j obtains 1 − (si+sj ) 2 , for i = 1, 2. If s1 = s2, then both players get a payoff of 1/2.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Compute the Nash equilibria of the following location game. There are two people who simultaneously select...
Compute the Nash equilibria of the following location game. There are two people who simultaneously select numbers between zero and one. Suppose player 1 chooses s1 and player 2 chooses s2 . If si = sj , then player i gets a payoff of (si + sj )/2 and player j obtains 1 − (si + sj )/2, for i = 1, 2. If s1 = s2 , then both players get a payoff of 1/2.
Consider the following game played between 100 people. Each person i chooses a number si between...
Consider the following game played between 100 people. Each person i chooses a number si between 20 and 60 (inclusive). Let a-i be defined as the average selection of the players other than player i ; that is, a-i = summation (j not equal to i) of sj all divided by 99. Player I’s payoff is ui(s) = 100 – (si – (3/2)a-i)2 For instance, if the average of the –i players’ choices is 40 and player i chose 56,...
Two players can name a positive integer number from 1 to 6. If the sum of...
Two players can name a positive integer number from 1 to 6. If the sum of the two numbers does not exceed 6 each player obtains payoff equal to the number that the player named. If the sum exceeds 6, the player who named the lower number obtains the payoff equal to that number and the other player obtains a payoff equal to the difference between 6 and the lower number. If the sum exceeds 6 and both numbers are...
24. Two players are engaged in a game of Chicken. There are two possible strategies: swerve...
24. Two players are engaged in a game of Chicken. There are two possible strategies: swerve and drive straight. A player who swerves is called Chicken and gets a payoff of zero, regardless of what the other player does. A player who drives straight gets a payoff of 432 if the other player swerves and a payoff of −48 if the other player also drives straight. This game has two pure strategy equilibria and a. a mixed strategy equilibrium in...
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is 1 and the payoff for B is 0. Player B Strategy 1 Strategy 2 Player A Strategy 1 (1,0) (0,1) Strategy 2 (0,1) (1,0) How many pure strategy Nash equilibria does...
QUESTION 3 Below is a game between player A and player B. Each player has two...
QUESTION 3 Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is -3 and the payoff for B is -2. Player B Strategy 1 Strategy 2 Player A Strategy 1 (-3,-2) (10,0) Strategy 2 (0,8) (0,0) How many pure strategy Nash...
Below is a game between player A and player B. Each player has two possible strategies:...
Below is a game between player A and player B. Each player has two possible strategies: 1 or 2. The payoffs for each combination of strategies between A and B are in the bracket. For example, if A plays 1 and B plays 1, the payoff for A is 1 and the payoff for B is 0. Player B Strategy 1 Strategy 2 Player A Strategy 1 (1,0) (0,1) Strategy 2 (0,1) (1,0) How many pure strategy Nash equilibria does...
In the “divide two apples” game, player 1 suggests a division scheme (x,y) from the set...
In the “divide two apples” game, player 1 suggests a division scheme (x,y) from the set {(2, 0), (1, 1), (0, 2)} where x is the number of apples allocated to player 1, and y is the number of apples allocated to player 2. Player 2 counters with a division scheme of her own that comes from the same set. The final allocation is obtained by averaging the two proposed division schemes. The apples can be cut if the resulting...
Pure strategy Nash equilibrium 3. In the following games, use the underline method to find all...
Pure strategy Nash equilibrium 3. In the following games, use the underline method to find all pure strategy Nash equilibrium. (B ) [0, 4, 4 0, 5, 3] [4, 0 0 4, 5, 3] [3, 5, 3, 5 6, 6] (C) [2, -1 0,0] [0,0 1,2] (D) [4,8 2,0] [6,2 0,8] (E) [3,3 2,4] [4,2 1,1] 4. In the following 3-player game, use the underline method to find all pure strategy Nash equilibria. Player 1 picks the row, Player 2...
For each of the following games: 1) Identify the Nash equilibrium/equilibria if they exist, 2) identify...
For each of the following games: 1) Identify the Nash equilibrium/equilibria if they exist, 2) identify all strictly dominant strategies if there are any, and 3) identify the Pareto-optimal outcomes and comment whether they coincide with the Nash Equilibrium(s) you found. Also, 4) would you classify the game as an invisible hand problem, an assurance game, a prisoners dilemma or none of these? Row Player (R1) (R2) Column Player     (C1)                         (C2) (-1,-1) (-5,0) (0,-5) (-4,-4)